Hjjeong Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9019407/publications.pdf Version: 2024-02-01

HUEONG LEONG

#	Article	IF	CITATIONS
1	Modeling of wave fields generated by ultrasonic transducers using a quasi-Monte Carlo method. Journal of the Acoustical Society of America, 2021, 149, 7-15.	1.1	3
2	Absolute Measurement of Material Nonlinear Parameters Using Noncontact Air-Coupled Reception. Materials, 2021, 14, 244.	2.9	1
3	Transmission Phase Control of Annular Array Transducers for Efficient Second Harmonic Generation in the Presence of a Stress-Free Boundary. Applied Sciences (Switzerland), 2021, 11, 4836.	2.5	1
4	Determining the Responsivity of Air-Coupled Piezoelectric Transducers Using a Comparative Method: Theory and Experiments. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3114-3125.	3.0	1
5	Simulation of Ultrasonic Beam Propagation From Phased Arrays in Anisotropic Media Using Linearly Phased Multi-Gaussian Beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 106-116.	3.0	7
6	Dual Element Transducer Approach for Second Harmonic Generation and Material Nonlinearity Measurement of Solids in the Pulse-Echo Method. Journal of Nondestructive Evaluation, 2020, 39, 1.	2.4	6
7	Optimal Design of Annular Phased Array Transducers for Material Nonlinearity Determination in Pulse–Echo Ultrasonic Testing. Materials, 2020, 13, 5565.	2.9	3
8	Characterizing Microstructural Evolution of TP304 Stainless Steel Using a Pulse-Echo Nonlinear Method. Materials, 2020, 13, 1395.	2.9	5
9	Optimization and Validation of Dual Element Ultrasound Transducers for Improved Pulse-Echo Measurements of Material Nonlinearity. IEEE Sensors Journal, 2020, 20, 13596-13606.	4.7	11
10	Simultaneously Determining Sensitivity and Effective Geometrical Parameters of Ultrasonic Piezoelectric Transducers Using a Self-Reciprocity Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1649-1657.	3.0	7
11	Characterization of Aging Treated 6061 Aluminum Alloy Using Nonlinear Rayleigh Wave. Journal of Nondestructive Evaluation, 2019, 38, 1.	2.4	11
12	Application of Fresnel Zone Plate Focused Beam to Optimized Sensor Design for Pulse-Echo Harmonic Generation Measurements. Sensors, 2019, 19, 1373.	3.8	6
13	Second-harmonic generation in focused beam fields of phased-array transducers in a nonlinear solid with a stress-free boundary. Transportation Safety and Environment, 2019, 1, 117-125.	2.1	3
14	Investigation of Material Nonlinearity Measurements Using the Third-Harmonic Generation. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 3635-3646.	4.7	3
15	Improvement of pulse-echo harmonic generation from a traction-free boundary through phase shift of a dual element transducer. Ultrasonics, 2018, 87, 145-151.	3.9	4
16	Acoustic nonlinearity parameter measurements in a pulse-echo setup with the stress-free reflection boundary. Journal of the Acoustical Society of America, 2018, 143, EL237-EL242.	1.1	14
17	Calibration of focused circular transducers using a multi-Gaussian beam model. Applied Acoustics, 2018, 133, 182-185.	3.3	8
18	Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers. Ultrasonics, 2018, 89, 118-125.	3.9	14

HJJEONG JEONG

#	Article	IF	CITATIONS
19	Modeling linear Rayleigh wave sound fields generated by angle beam wedge transducers. AIP Advances, 2017, 7, .	1.3	8
20	Focused ultrasonic beam behavior at a stress-free boundary and applicability for measuring nonlinear parameter in a reflection mode. AIP Conference Proceedings, 2017, , .	0.4	0
21	Calibration of focused ultrasonic transducers and absolute measurements of fluid nonlinearity with diffraction and attenuation corrections. Journal of the Acoustical Society of America, 2017, 142, 984-990.	1.1	13
22	Receiver calibration and the nonlinearity parameter measurement of thick solid samples with diffraction and attenuation corrections. Ultrasonics, 2017, 81, 147-157.	3.9	28
23	Theoretical and experimental investigation of the pulse-echo nonlinearity acoustic sound fields of focused transducers. Applied Acoustics, 2017, 117, 145-149.	3.3	37
24	Analytical Diffraction Corrections for Circular Focused Transducers Expressed Using the Multi-Gaussian Beam Model. Acta Acustica United With Acustica, 2017, 103, 717-720.	0.8	9
25	Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading. Sensors, 2017, 17, 1449.	3.8	16
26	A novel and practical approach for determination of the acoustic nonlinearity parameter using a pulse-echo method. AIP Conference Proceedings, 2016, , .	0.4	7
27	Development of attenuation and diffraction corrections for linear and nonlinear Rayleigh surface waves radiating from a uniform line source. AIP Advances, 2016, 6, 045313.	1.3	3
28	Phased Array Beam Fields of Nonlinear Rayleigh Surface Waves. Chinese Physics Letters, 2016, 33, 074302.	3.3	3
29	Development of explicit diffraction corrections for absolute measurements of acoustic nonlinearity parameters in the quasilinear regime. Ultrasonics, 2016, 70, 199-203.	3.9	8
30	Modeling nonlinear Rayleigh wave fields generated by angle beam wedge transducers—A theoretical study. Wave Motion, 2016, 67, 141-159.	2.0	17
31	A more general model equation of nonlinear Rayleigh waves and their quasilinear solutions. Modern Physics Letters B, 2016, 30, 1650096.	1.9	5
32	A novel method for extracting acoustic nonlinearity parameters with diffraction corrections. Journal of Mechanical Science and Technology, 2016, 30, 643-652.	1.5	10
33	Assessment of Acoustic Nonlinearity Parameters Using an Optimized Data-Fitting Method with Multi-Gaussian Beam Model-Based Diffraction Corrections. Research in Nondestructive Evaluation, 2016, 27, 230-250.	1.1	13
34	Simultaneous evaluation of acoustic nonlinearity parameter and attenuation coefficients using the finite amplitude method. AIP Advances, 2015, 5, .	1.3	11
35	Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter. AIP Advances, 2015, 5, .	1.3	21
36	Signal processing techniques for recovering input waveforms in dispersive Lamb wave propagation. , 2014, , .		0

HJJEONG JEONG

#	Article	IF	CITATIONS
37	Impact source location of composites using a single sensor and time reversal technique. , 2013, , .		2
38	Ultrasonic beam focusing on a defect in anisotropic inhomogeneous media. , 2013, , .		0
39	Simultaneous Measurements of Harmonic Waves at Fatigue-Cracked Interfaces. Chinese Physics Letters, 2011, 28, 084302.	3.3	5
40	Defect detection and localization in plates using a lamb wave time reversal technique. International Journal of Precision Engineering and Manufacturing, 2011, 12, 427-434.	2.2	18
41	MEASUREMENTS OF NONLINEAR HARMONIC WAVES AT CRACKED INTERFACES. , 2011, , .		2
42	IMAGING OF A DEFECT IN THIN PLATES USING THE TIME REVERSAL OF SINGLE MODE LAMB WAVES. , 2011, , .		1
43	TIME REVERSAL BEAM FOCUSING OF ULTRASONIC ARRAY TRANSDUCER ON A DEFECT IN A TWO LAYER MEDIUM. , 2010, , .		1
44	Ultrasonic Transducer Fields Modeled with a Modular Multi-Gaussian Beam and Application to a Contact Angle Beam Testing. Research in Nondestructive Evaluation, 2008, 19, 87-103.	1.1	10
45	Finite element analysis of laser-generated ultrasound for characterizing surface-breaking cracks. Journal of Mechanical Science and Technology, 2005, 19, 1116-1122.	1.5	14
46	Finite-Element Analysis of Laser-Generated Ultrasounds for Wave Propagation and Interaction with Surface-Breaking Cracks. Research in Nondestructive Evaluation, 2005, 16, 1-14.	1.1	21
47	Prediction of Angle Beam Ultrasonic Testing Signals from a Surface Breaking Crack in a Plate Using Multi-Gaussian Beams and Ray Methods. AIP Conference Proceedings, 2004, , .	0.4	4
48	A nondestructive method for estimation of the fracture toughness of CrMoV rotor steels based on ultrasonic nonlinearity. Ultrasonics, 2003, 41, 543-549.	3.9	39
49	Evaluation of fracture toughness degradation of CrMoV rotor steels based on ultrasonic nonlinearity measurements. Journal of Mechanical Science and Technology, 2002, 16, 147-154.	0.4	13
50	Nonlinear acoustic effects and material strength degradation due to high temperature exposure. AIP Conference Proceedings, 2001, , .	0.4	1
51	Analysis of plate wave motions excited by a point load using a wavelet transform. AIP Conference Proceedings, 2001, , .	0.4	0
52	Fracture source location in thin plates using the wavelet transform of dispersive waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47, 612-619.	3.0	99