Kuangda Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9019189/publications.pdf

Version: 2024-02-01

17	5,240	17 h-index	17
papers	citations		g-index
17	17	17	7060 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nature Biomedical Engineering, 2018, 2, 600-610.	11.6	438
2	Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Advanced Materials, 2018, 30, e1707634.	11.1	504
3	Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nature Communications, 2018, 9, 2351.	5.8	253
4	Electron Crystallography Reveals Atomic Structures of Metal–Organic Nanoplates with M ₁₂ (μ ₃ -O) ₈ (∫¼ ₃ -OH) ₈ -OH) ₈ -OH)<(M = Zr, Hf) Secondary Building Units. Inorganic Chemistry, 2017, 56, 8128-8134.	H)< £9 b>6<	/su6b2>
5	Nanoscale Metal–Organic Layers for Deeply Penetrating Xâ€rayâ€Induced Photodynamic Therapy. Angewandte Chemie, 2017, 129, 12270-12274.	1.6	59
6	Nanoscale Metal–Organic Layers for Deeply Penetrating Xâ€rayâ€Induced Photodynamic Therapy. Angewandte Chemie - International Edition, 2017, 56, 12102-12106.	7.2	146
7	Chlorin-Based Nanoscale Metal–Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. Journal of the American Chemical Society, 2016, 138, 12502-12510.	6.6	429
8	Nanoscale Metal–Organic Frameworks for Ratiometric Oxygen Sensing in Live Cells. Journal of the American Chemical Society, 2016, 138, 2158-2161.	6.6	276
9	A Chlorin-Based Nanoscale Metal–Organic Framework for Photodynamic Therapy of Colon Cancers. Journal of the American Chemical Society, 2015, 137, 7600-7603.	6.6	407
10	Self-assembled nanoscale coordination polymers carrying oxaliplatin and gemcitabine for synergistic combination therapy of pancreatic cancer. Journal of Controlled Release, 2015, 201, 90-99.	4.8	120
11	Metal–Organic Frameworks as Sensory Materials and Imaging Agents. Inorganic Chemistry, 2014, 53, 1916-1924.	1.9	354
12	Nanoscale Metal–Organic Framework for Highly Effective Photodynamic Therapy of Resistant Head and Neck Cancer. Journal of the American Chemical Society, 2014, 136, 16712-16715.	6.6	614
13	Metalâ€Organic Framework Templated Inorganic Sorbents for Rapid and Efficient Extraction of Heavy Metals. Advanced Materials, 2014, 26, 7993-7997.	11.1	148
14	Nanoscale Metal–Organic Frameworks for the Co-Delivery of Cisplatin and Pooled siRNAs to Enhance Therapeutic Efficacy in Drug-Resistant Ovarian Cancer Cells. Journal of the American Chemical Society, 2014, 136, 5181-5184.	6.6	759
15	Nanoscale Metal–Organic Frameworks for Real-Time Intracellular pH Sensing in Live Cells. Journal of the American Chemical Society, 2014, 136, 12253-12256.	6.6	268
16	Synergistic Assembly of Heavy Metal Clusters and Luminescent Organic Bridging Ligands in Metalâ€"Organic Frameworks for Highly Efficient X-ray Scintillation. Journal of the American Chemical Society, 2014, 136, 6171-6174.	6.6	198
17	Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nature Communications, 2014, 5, 4182.	5.8	205