
Roshan A Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9018844/publications.pdf Version: 2024-02-01

ROSHAN A LAIN

#	Article	IF	CITATIONS
1	A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genetics, 2021, 17, e1008943.	3.5	10
2	A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold. Cell Reports, 2018, 23, 878-887.	6.4	49
3	A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making. Current Biology, 2018, 28, 1357-1369.e5.	3.9	39
4	Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron, 2016, 89, 725-733.	8.1	170
5	A Genome-wide Screen Identifies PAPP-AA-Mediated IGFR Signaling as a Novel Regulator of Habituation Learning. Neuron, 2015, 85, 1200-1211.	8.1	85
6	Mirror Movement-Like Defects in Startle Behavior of Zebrafish <i>dcc</i> Mutants Are Caused by Aberrant Midline Guidance of Identified Descending Hindbrain Neurons. Journal of Neuroscience, 2014, 34, 2898-2909.	3.6	15
7	Netrin/DCC Signaling Guides Olfactory Sensory Axons to Their Correct Location in the Olfactory Bulb. Journal of Neuroscience, 2012, 32, 4440-4456.	3.6	37
8	A late phase of germ plasm accumulation during <i>Drosophila</i> oogenesis requires Lost and Rumpelstiltskin. Development (Cambridge), 2011, 138, 3431-3440.	2.5	44
9	Chemical modulation of memory formation in larval zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15468-15473.	7.1	170
10	Molecular-Genetic Mapping of Zebrafish Mutants with Variable Phenotypic Penetrance. PLoS ONE, 2011, 6, e26510.	2.5	8
11	The <i>Drosophila</i> hnRNP M homolog Rumpelstiltskin regulates <i>nanos</i> mRNA localization. Development (Cambridge), 2008, 135, 973-982.	2.5	33
12	Temporal complexity within a translational control element in the nanos mRNA. Development (Cambridge), 2004, 131, 5849-5857.	2.5	62
13	Characterization of nirV and a gene encoding a novel pseudoazurin in Rhodobacter sphaeroides 2.4.3 The GenBank accession number for the sequence determined in this work is AF339883 Microbiology (United Kingdom), 2001, 147, 2505-2515.	1.8	38