
Lixing Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9018425/publications.pdf Version: 2024-02-01

LIVING KANG

#	Article	IF	CITATIONS
1	Highâ€Purity Monochiral Carbon Nanotubes with a 1.2Ânm Diameter for Highâ€Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, 2107119.	7.8	16
2	Modulusâ€Tailorable, Stretchable, and Biocompatible Carbonene Fiber for Adaptive Neural Electrode. Advanced Functional Materials, 2022, 32, 2107360.	7.8	15
3	Controlled growth of ultrathin ferromagnetic βâ€MnSe semiconductor. SmartMat, 2022, 3, 482-490.	6.4	7
4	Controllable synthesis of high-quality two-dimensional tellurium by a facile chemical vapor transport strategy. IScience, 2022, 25, 103594.	1.9	11
5	Hyperbolic phonon polaritons with positive and negative phase velocities in suspended <i>α</i> -MoO3. Applied Physics Letters, 2022, 120, .	1.5	15
6	Fabrication of high-performance carbon nanotube/copper composite fibers by interface thiol-modification. Nanotechnology, 2022, 33, 285701.	1.3	2
7	Few-layer hexagonal boron nitride as a shield of brittle materials for cryogenic s-SNOM exploration of phonon polaritons. Applied Physics Letters, 2022, 120, .	1.5	2
8	Emerging Optical Inâ€Memory Computing Sensor Synapses Based on Lowâ€Dimensional Nanomaterials for Neuromorphic Networks. Advanced Intelligent Systems, 2022, 4, .	3.3	13
9	Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy, 2021, 79, 105429.	8.2	117
10	Grapheneâ€Coated Gold Chips for Enhanced Goos–Hanchen Shift Plasmonic Sensing. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000690.	0.8	3
11	CVD Growth of Largeâ€scale and Highly Crystalline 2D Chromium Telluride Nanoflakes. ChemNanoMat, 2021, 7, 323-327.	1.5	16
12	Two-step chemical vapor deposition synthesis of NiTe ₂ -MoS ₂ vertical junctions with improved MoS ₂ transistor performance. Nanotechnology, 2021, 32, 235204.	1.3	12
13	2D/2D atomic double-layer WS2/Nb2O5 shell/core nanosheets with ultrafast interfacial charge transfer for boosting photocatalytic H2 evolution. Chinese Chemical Letters, 2021, 32, 3128-3132.	4.8	23
14	Recent Advances and Prospects of Fiberâ€6haped Rechargeable Aqueous Alkaline Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100060.	2.8	5
15	Chemical Vapor Deposition of Superconducting FeTe _{1–<i>x</i>} Se _{<i>x</i>} Nanosheets. Nano Letters, 2021, 21, 5338-5344.	4.5	15
16	Black Phosphorus@Ti ₃ C ₂ T _{<i>x</i>} MXene Composites with Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage. ACS Nano, 2021, 15, 12975-12987.	7.3	70
17	Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors. Carbon, 2021, 184, 764-771.	5.4	14
18	Machine Learning Driven Synthesis of Few-Layered WTe ₂ with Geometrical Control. Journal of the American Chemical Society, 2021, 143, 18103-18113.	6.6	30

LIXING KANG

#	Article	IF	CITATIONS
19	Improving the Sensitivity of SPR Sensors with Au–Ag alloys and 2D Materials — a Simulationâ€Based Approach. Advanced Theory and Simulations, 2021, 4, 2100292.	1.3	4
20	Spaceâ€confined microwave synthesis of ternaryâ€layered BiOCl crystals with highâ€performance ultraviolet photodetection. InformaÄnÃ-Materiály, 2020, 2, 593-600.	8.5	32
21	All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Materials, 2020, 25, 124-130.	9.5	100
22	Carbon Microtube Aerogel Derived from Kapok Fiber: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. ACS Nano, 2020, 14, 595-602.	7.3	104
23	Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVIDâ€19 SARSâ€CoVâ€2 Spike Protein. Advanced Theory and Simulations, 2020, 3, 2000185.	1.3	55
24	Strain-Engineering of Bi ₁₂ O ₁₇ Br ₂ Nanotubes for Boosting Photocatalytic CO ₂ Reduction. , 2020, 2, 1025-1032.		82
25	Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale, 2020, 12, 16427-16432.	2.8	62
26	A Comparative Performance Evaluation of 2D Nanomaterials for Applications in Plasmonic Biosensing. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000255.	0.8	4
27	Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nature Communications, 2020, 11, 3729.	5.8	120
28	Multifaceted Hybrid Carbon Fibers: Applications in Renewables, Sensing and Tissue Engineering. Journal of Composites Science, 2020, 4, 117.	1.4	4
29	A Tandem 0D/2D/2D NbS ₂ Quantum Dot/Nb ₂ O ₅ Nanosheet/gâ€C ₃ N ₄ Flake System with Spatial Charge–Transfer Cascades for Boosting Photocatalytic Hydrogen Evolution. Small, 2020, 16, e2003302.	5.2	40
30	Heterolayered Films of Monolayer WS ₂ Nanosheets on Monolayer Graphene Embedded in Poly(methyl methacrylate) for Plasmonic Biosensing. ACS Applied Nano Materials, 2020, 3, 10446-10453.	2.4	10
31	Plasmonic-based sensitivity enhancement of a Goos–Hächen shift biosensor using transition metal dichalcogenides: a theoretical insight. New Journal of Chemistry, 2020, 44, 16144-16151.	1.4	6
32	Engineering covalently bonded 2D layered materials by self-intercalation. Nature, 2020, 581, 171-177.	13.7	185
33	Two-dimensional PtSe2 Theoretically Enhanced Goos-HÃ ¤ chen Shift Sensitive Plasmonic Biosensors. Plasmonics, 2020, 15, 1815-1826.	1.8	26
34	Investigation of Plasmonic Detection of Human Respiratory Virus. Advanced Theory and Simulations, 2020, 3, 2000074.	1.3	22
35	Rational Construction of Self‧tanding Sulfurâ€Doped Fe ₂ O ₃ Anodes with Promoted Energy Storage Capability for Wearable Aqueous Rechargeable NiCoâ€Fe Batteries. Advanced Energy Materials, 2020, 10, 2001064.	10.2	39
36	Advanced Iowâ€dimensional carbon materials for flexible devices. InformaÄnÃ-Materiály, 2020, 2, 698-714.	8.5	59

LIXING KANG

#	Article	IF	CITATIONS
37	Controlled Growth of 3R Phase Tantalum Diselenide and Its Enhanced Superconductivity. Journal of the American Chemical Society, 2020, 142, 2948-2955.	6.6	27
38	Synthesis and Electronic Devices of Atom-thin Transition Metal Dichalcogenides. , 2019, , .		0
39	Enhancing the cycling stability of Na-ion batteries by bonding MoS2 on assembled carbon-based materials. Nano Materials Science, 2019, 1, 310-317.	3.9	9
40	Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 2019, 19, 4035-4042.	4.5	202
41	Preparation of Mo2C–carbon nanomaterials for hydrogen evolution reaction. Carbon Letters, 2019, 29, 225-232.	3.3	3
42	Fully Solarâ€Powered Uninterrupted Overall Waterâ€ S plitting Systems. Advanced Functional Materials, 2019, 29, 1808889.	7.8	24
43	Anisotropic Ramanâ€Enhancement Effect on Singleâ€Walled Carbon Nanotube Arrays. Advanced Materials Interfaces, 2018, 5, 1700941.	1.9	3
44	Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature, 2017, 543, 234-238.	13.7	317
45	Recycling Strategy for Fabricating Low-Cost and High-Performance Carbon Nanotube TFT Devices. ACS Applied Materials & Interfaces, 2017, 9, 15719-15726.	4.0	30
46	In situ twisting for stabilizing and toughening conductive graphene yarns. Nanoscale, 2017, 9, 11523-11529.	2.8	24
47	Highâ€Throughput Determination of Statistical Structure Information for Horizontal Carbon Nanotube Arrays by Optical Imaging. Advanced Materials, 2016, 28, 2018-2023.	11.1	11
48	Growth of Horizontal Semiconducting SWNT Arrays with Density Higher than 100 tubes/μm using Ethanol/Methane Chemical Vapor Deposition. Journal of the American Chemical Society, 2016, 138, 6727-6730.	6.6	46
49	Three dimensional CNTs aerogel/MoS x as an electrocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2016, 194, 16-21.	10.8	90
50	Selective Growth of Subnanometer Diameter Single-Walled Carbon Nanotube Arrays in Hydrogen-Free CVD. Journal of the American Chemical Society, 2016, 138, 12723-12726.	6.6	22
51	Solutionâ€Processable Highâ€Purity Semiconducting SWCNTs for Largeâ€Area Fabrication of Highâ€Performance Thinâ€Film Transistors. Small, 2016, 12, 4993-4999.	5.2	107
52	Growth of Close-Packed Semiconducting Single-Walled Carbon Nanotube Arrays Using Oxygen-Deficient TiO ₂ Nanoparticles as Catalysts. Nano Letters, 2015, 15, 403-409.	4.5	59
53	Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nature Communications, 2015, 6, 6099.	5.8	120
54	Selective Scission of C–O and C–C Bonds in Ethanol Using Bimetal Catalysts for the Preferential Growth of Semiconducting SWNT Arrays. Journal of the American Chemical Society, 2015, 137, 1012-1015.	6.6	38

LIXING KANG

#	Article	IF	CITATIONS
55	Diameter-Specific Growth of Semiconducting SWNT Arrays Using Uniform Mo2C Solid Catalyst. Journal of the American Chemical Society, 2015, 137, 8904-8907.	6.6	71
56	Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Research, 2015, 8, 3694-3703.	5.8	36
57	State of the Art of Singleâ€Walled Carbon Nanotube Synthesis on Surfaces. Advanced Materials, 2014, 26, 5898-5922.	11.1	71
58	Physical Vapor Deposition Growth of Ultrathin Molybdenum Dioxide Nanosheets with Excellent Conductivity. Advanced Engineering Materials, 0, , 2101358.	1.6	1