Peter H Charlton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9017995/publications.pdf Version: 2024-02-01

PETER H CHARLTON

#	Article	IF	CITATIONS
1	An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. Physiological Measurement, 2016, 37, 610-626.	1.2	252
2	Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review. IEEE Reviews in Biomedical Engineering, 2018, 11, 2-20.	13.1	224
3	Signal Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring. IEEE Journal of Biomedical and Health Informatics, 2014, 19, 1-1.	3.9	215
4	Toward a Robust Estimation of Respiratory Rate From Pulse Oximeters. IEEE Transactions on Biomedical Engineering, 2017, 64, 1914-1923.	2.5	197
5	Photoplethysmographic derivation of respiratory rate: a review of relevant physiology. Journal of Medical Engineering and Technology, 2012, 36, 1-7.	0.8	169
6	Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1062-H1085.	1.5	127
7	Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants. Physiological Measurement, 2017, 38, 669-690.	1.2	92
8	Assessing mental stress from the photoplethysmogram: a numerical study. Physiological Measurement, 2018, 39, 054001.	1.2	71
9	A "datathon―model to support cross-disciplinary collaboration. Science Translational Medicine, 2016, 8, 333ps8.	5.8	55
10	Wearable Photoplethysmography for Cardiovascular Monitoring. Proceedings of the IEEE, 2022, 110, 355-381.	16.4	48
11	Identifying Hemodynamic Determinants of Pulse Pressure. Hypertension, 2017, 70, 1176-1182.	1.3	40
12	Influence of mental stress on the pulse wave features of photoplethysmograms. Healthcare Technology Letters, 2020, 7, 7-12.	1.9	39
13	Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H493-H522.	1.5	35
14	An impedance pneumography signal quality index: Design, assessment and application to respiratory rate monitoring. Biomedical Signal Processing and Control, 2021, 65, 102339.	3.5	34
15	Probabilistic Estimation of Respiratory Rate from Wearable Sensors. Smart Sensors, Measurement and Instrumentation, 2015, , 241-262.	0.4	33
16	Waveform Analysis to Estimate Respiratory Rate. , 2016, , 377-390.		22
17	Estimating central blood pressure from aortic flow: development and assessment of algorithms. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H494-H510.	1.5	19
18	Health Informatics via Machine Learning for the Clinical Management of Patients. Yearbook of Medical Informatics, 2015, 24, 38-43,	0.8	18

#	Article	IF	CITATIONS
19	Wearable photoplethysmography devices. , 2022, , 401-439.		16
20	Photoplethysmography signal processing and synthesis. , 2022, , 69-146.		15
21	Measurement of cardiovascular state using attractor reconstruction analysis. , 2015, , .		13
22	A New Framework to Estimate Breathing Rate From Electrocardiogram, Photoplethysmogram, and Blood Pressure Signals. IEEE Access, 2021, 9, 45832-45844.	2.6	12
23	Estimation of respiratory rate from motion contaminated photoplethysmography signals incorporating accelerometry. Healthcare Technology Letters, 2019, 6, 19-26.	1.9	11
24	Beyond HRV: Analysis of ECG Signals using Attractor Reconstruction. , 0, , .		10
25	Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research. European Heart Journal Digital Health, 2021, 2, 676-690.	0.7	10
26	Inaccuracy of pulse oximetry with dark skin pigmentation: clinical implications and need for improvement. British Journal of Anaesthesia, 2023, 130, e33-e36.	1.5	10
27	Acquiring Wearable Photoplethysmography Data in Daily Life: The PPG Diary Pilot Study. , 2020, 2, 80.		9
28	Novel Pressure Wave Separation Analysis for Cardiovascular Function Assessment Highlights Major Role of Aortic Root. IEEE Transactions on Biomedical Engineering, 2022, 69, 1707-1716.	2.5	6
29	Acquiring Wearable Photoplethysmography Data in Daily Life: The PPG Diary Pilot Study. Engineering Proceedings, 2020, 2, 80.	0.4	5
30	Establishing best practices in photoplethysmography signal acquisition and processing. Physiological Measurement, 2022, 43, 050301.	1.2	4
31	A method for assessing the reliability of heart rates obtained from ambulatory ECG. , 2012, , .		3
32	Optimising the Windkessel model for cardiac output monitoring during changes in vascular tone. , 2014, 2014, 3759-62.		3
33	Measuring Vascular Recovery Rate After Exercise. Proceedings (mdpi), 2018, 4, .	0.2	3
34	Alzheimer's Disease: A Step Towards Prognosis Using Smart Wearables. Proceedings (mdpi), 2019, 4, 8.	0.2	3
35	Relationship between fiducial points on the peripheral and central blood pressure waveforms: rate of rise of the central waveform is a determinant of peripheral systolic blood pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1601-H1608.	1.5	3
36	Blood Pressure Estimation Based on Photoplethysmography: Finger Versus Wrist. , 2021, , .		3

Blood Pressure Estimation Based on Photoplethysmography: Finger Versus Wrist. , 2021, , . 36

PETER H CHARLTON

#	Article	IF	CITATIONS
37	Benchmarking Photoplethysmography Peak Detection Algorithms Using the Electrocardiogram Signal as a Reference. , 2021, , .		3
38	P164 INDICES TO ASSESS AORTIC STIFFNESS FROM THE FINGER PHOTOPLETHYSMOGRAM: IN SILICO AND IN VIVO TESTING. Artery Research, 2018, 24, 128.	0.3	2
39	Comment on â€~Numerical assessment and comparison of pulse wave velocity methods aiming at measuring aortic stiffness'. Physiological Measurement, 2018, 39, 078001.	1.2	2
40	Using Smart Wearables to Monitor Cardiac Ejection. Proceedings (mdpi), 2018, 4, .	0.2	2
41	Automated P-Wave Quality Assessment for Wearable Sensors. Proceedings (mdpi), 2018, 4, .	0.2	1
42	Screening for Atrial Fibrillation: Improving Efficiency of Manual Review of Handheld Electrocardiograms. Engineering Proceedings, 2020, 2, 78.	0.4	1
43	A medical classic: Liza of Lambeth. Clinical Medicine, 2012, 12, 393-394.	0.8	0
44	3.6 NON-INVASIVE, MRI-BASED ESTIMATION OF PATIENT-SPECIFIC AORTIC BLOOD PRESSURE USING ONE-DIMENSIONAL BLOOD FLOW MODELLING. Artery Research, 2017, 20, 54.	0.3	0
45	P121 IDENTIFYING HAEMODYNAMIC DETERMINANTS OF PULSE PRESSURE: AN INTEGRATED NUMERICAL AND PHYSIOLOGICAL APPROACH. Artery Research, 2017, 20, 78.	0.3	Ο
46	P52 ESTIMATING CENTRAL BLOOD PRESSURE FROM MRI DATA USING REDUCED-ORDER COMPUTATIONAL MODELS. Artery Research, 2018, 24, 93.	0.3	0
47	P32 DETERMINING CARDIAC AND ARTERIAL CONTRIBUTIONS TO CENTRAL PULSE PRESSURE. Artery Research, 2018, 24, 88.	0.3	0
48	P7 Assessing Vascular Age from Peripheral Pulse Waves: a Study of Existing Indices, and Directions for Future Research. Artery Research, 2019, 25, S49-S49.	0.3	0
49	Screening for Atrial Fibrillation: Improving Efficiency of Manual Review of Handheld Electrocardiograms. Engineering Proceedings, 2020, 2, 78.	0.4	0