Takahiko Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9017969/publications.pdf

Version: 2024-02-01

713444 687335 23 737 13 21 citations h-index g-index papers 27 27 27 1388 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Tceal5 and Tceal7 Function in C2C12 Myogenic Differentiation via Exosomes in Fetal Bovine Serum. International Journal of Molecular Sciences, 2022, 23, 2036.	4.1	2
2	Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice. Stem Cell Research and Therapy, 2021, 12, 446.	5.5	11
3	Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular Dystrophy Model. Stem Cell Reports, 2020, 15, 80-94.	4.8	31
4	Androgen receptor in satellite cells is not essential for muscle regenerations. Experimental Results, $2020,1,.$	0.6	3
5	Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells. Journal of Neuromuscular Diseases, 2020, 7, 395-405.	2.6	6
6	Human Skeletal Muscle Cells Derived from the Orbicularis Oculi Have Regenerative Capacity for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2019, 20, 3456.	4.1	9
7	Core Transcription Factors Promote Induction of PAX3-Positive Skeletal Muscle Stem Cells. Stem Cell Reports, 2019, 13, 352-365.	4.8	29
8	Effect of Trinucleotide Repeat Expansion on the Expression of TCF4mRNA in Fuchs' Endothelial Corneal Dystrophy., 2019, 60, 779.		14
9	Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development (Cambridge), 2019, 146, .	2.5	34
10	Upregulation of matrix metalloproteinase triggers transdifferentiation of retinal pigmented epithelial cells in <i>Xenopus laevis</i> : A Link between inflammatory response and regeneration. Developmental Neurobiology, 2017, 77, 1086-1100.	3.0	14
11	Activation of TGF- \hat{l}^2 signaling induces cell death via the unfolded protein response in Fuchs endothelial corneal dystrophy. Scientific Reports, 2017, 7, 6801.	3.3	50
12	Myogenic Differentiation from <i>MYOGENIN</i> -Mutated Human iPS Cells by CRISPR/Cas9. Stem Cells International, 2017, 2017, 1-9.	2.5	6
13	SOX10-Nano-Lantern Reporter Human iPS Cells; A Versatile Tool for Neural Crest Research. PLoS ONE, 2017, 12, e0170342.	2.5	7
14	Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity. PLoS ONE, 2017, 12, e0177516.	2.5	30
15	Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche. Cell Reports, 2015, 13, 302-314.	6.4	88
16	Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration. Mechanisms of Development, 2015, 135, 58-67.	1.7	22
17	Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration. PLoS ONE, 2015, 10, e0130436.	2.5	31
18	Derivation of Mesenchymal Stromal Cells from Pluripotent Stem Cells through a Neural Crest Lineage using Small Molecule Compounds with Defined Media. PLoS ONE, 2014, 9, e112291.	2.5	137

Таканіко Sato

#	Article	IF	CITATIONS
19	miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nature Communications, 2014, 5, 4597.	12.8	81
20	Fetal Skeletal Muscle Progenitors Have Regenerative Capacity after Intramuscular Engraftment in Dystrophin Deficient Mice. PLoS ONE, 2013, 8, e63016.	2.5	12
21	Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo. BMC Genomics, 2010, 11, 696.	2.8	41
22	A Pax3/Dmrt2/Myf5 Regulatory Cascade Functions at the Onset of Myogenesis. PLoS Genetics, 2010, 6, e1000897.	3.5	79
23	Collagen-VI Supplementation by Cell Transplantation Improves Muscle Regeneration in Ullrich Congenital Muscular Dystrophy Model Mice. SSRN Electronic Journal, 0, , .	0.4	O