
Yining Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/901784/publications.pdf Version: 2024-02-01

YINING WH

#	Article	IF	CITATIONS
1	Enhanced oil recovery mechanism by surfactant-silica nanoparticles imbibition in ultra-low permeability reservoirs. Journal of Molecular Liquids, 2022, 348, 118010.	4.9	31
2	Study on a Two-dimensional nanomaterial reinforced wormlike micellar system. Journal of Molecular Liquids, 2022, 346, 118236.	4.9	6
3	Probing the mechanism of in situ oil droplet swelling during low salinity water flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128133.	4.7	5
4	Modulation of bubble flow resistance and surface fluidity :the effect of nanoparticle packing density at gas–liquid interface. Journal of Molecular Liquids, 2022, 350, 118574.	4.9	2
5	Preparation of dual network semi-solidified gelled-foam for sealing gas channeling in fractured-vuggy reservoirs. Journal of Petroleum Science and Engineering, 2022, 216, 110687.	4.2	3
6	The spontaneous imbibition mechanisms for enhanced oil recovery by gel breaking fluid of clean fracturing fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129568.	4.7	11
7	Development and Performance Evaluation of a Novel Silica Nanoparticle-Reinforced CO ₂ -Sensitive Fracturing Fluid with High Temperature and Shear Resistance Ability. Energy & Fuels, 2022, 36, 7177-7185.	5.1	5
8	Anionic surfactant based on oil-solid interfacial interaction control for efficient residual oil development. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129396.	4.7	5
9	Variations in the diversity of the soil microbial community and structure under various categories of degraded wetland in Sanjiang Plain, northeastern China. Land Degradation and Development, 2021, 32, 2143-2156.	3.9	30
10	Novel high-hydrophilic carbon dots from petroleum coke for boosting injection pressure reduction and enhancing oil recovery. Carbon, 2021, 184, 186-194.	10.3	25
11	Study on the way of destroying hydrated cation bridges by atomic force microscope and molecular dynamics simulation. Journal of Molecular Liquids, 2021, 342, 117453.	4.9	5
12	Probing of the hydrated cation bridges in the oil/brine/silica system via atomic force microscopy and molecular dynamics simulation. Fuel, 2021, 306, 121666.	6.4	10
13	Investigating breakup behaviors of the non-Newtonian fluid: A case study of oil droplet using 3-D pore throat structured microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124330.	4.7	6
14	The flow behaviors of nanoparticleâ€stabilized bubbles in microchannel: Influence of surface hardening. AICHE Journal, 2020, 66, e16865.	3.6	7
15	The formation of satellite droplets in micro-devices due to the rupture of neck filament. Chemical Engineering Research and Design, 2020, 153, 435-442.	5.6	9
16	Reduction of clean fracturing fluid filtration loss by viscosity enhancement using nanoparticles: Is it feasible?. Chemical Engineering Research and Design, 2020, 156, 414-424.	5.6	7
17	The preparation and spontaneous imbibition of carbon-based nanofluid for enhanced oil recovery in tight reservoirs. Journal of Molecular Liquids, 2020, 313, 113564.	4.9	28
18	Effects of structural properties of alcohol molecules on decomposition of natural gas hydrates: A molecular dynamics study. Fuel, 2020, 268, 117322.	6.4	19

YINING WU

#	Article	IF	CITATIONS
19	Viscoelastic surfactant fluids filtration in porous media: A poreâ€scale study. AICHE Journal, 2020, 66, e16229.	3.6	6
20	Study on the Reducing Injection Pressure Regulation of Hydrophobic Carbon Nanoparticles. Langmuir, 2020, 36, 3989-3996.	3.5	20
21	Flow Patterns of Viscoelastic Fracture Fluids in Porous Media: Influence of Pore-Throat Structures. Polymers, 2019, 11, 1291.	4.5	5
22	Self-Sustained Coalescence–Breakup Cycles of Ferrodrops under a Magnetic Field. Langmuir, 2019, 35, 12028-12034.	3.5	3
23	Effect of Silica Nanoparticles on Wormlike Micelles with Different Entanglement Degrees. Journal of Surfactants and Detergents, 2019, 22, 587-595.	2.1	9
24	Adsorption behaviour of surfactant-nanoparticles at the gas-liquid interface: Influence of the alkane chain length. Chemical Engineering Science, 2019, 206, 203-211.	3.8	41
25	Size-, Aggregation-, and Oxidization-Dependent Perturbation of Methane Hydrate by Graphene Nanosheets Revealed by Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 13154-13166.	3.1	15
26	Experimental investigation of spontaneous imbibition process of nanofluid in ultralow permeable reservoir with nuclear magnetic resonance. Chemical Engineering Science, 2019, 201, 212-221.	3.8	52
27	Morphological insights into the catalytic aquathermolysis of crude oil with an easily prepared high-efficiency Fe3O4-containing catalyst. Fuel, 2019, 245, 420-428.	6.4	37
28	Precisely Tailoring Bubble Morphology in Microchannel by Nanoparticles Self-assembly. Industrial & Engineering Chemistry Research, 2019, 58, 3707-3713.	3.7	32
29	Oil migration in nanometer to micrometer sized pores of tight oil sandstone during dynamic surfactant imbibition with online NMR. Fuel, 2019, 245, 544-553.	6.4	74
30	The construction of anhydride-modified silica nanoparticles (AMSNPs) strengthened wormlike micelles based on strong electrostatic and hydrogen bonding interactions. Journal of Molecular Liquids, 2019, 277, 372-379.	4.9	13
31	Solid-like film formed by nano-silica self-assembly at oil–water interface. Chemical Engineering Science, 2019, 195, 51-61.	3.8	18
32	Investigation on flow characteristic of viscoelasticity fluids in pore-throat structure. Journal of Petroleum Science and Engineering, 2019, 174, 821-832.	4.2	14
33	Flow behaviors of a viscoelastic polymer solution at 3D micro pore-throat structure. Journal of Dispersion Science and Technology, 2019, 40, 1795-1803.	2.4	2
34	Study on the synergy between silica nanoparticles and surfactants for enhanced oil recovery during spontaneous imbibition. Journal of Molecular Liquids, 2018, 261, 373-378.	4.9	104
35	Purification of Recombinant <i>L</i> â€Asparaginase II Using Solventâ€Freezeâ€Out Technology. Chemical Engineering and Technology, 2018, 41, 1080-1085.	1.5	6
36	Enhanced Oil Recovery Study of a New Mobility Control System on the Dynamic Imbibition in a Tight Oil Fracture Network Model. Energy & Fuels, 2018, 32, 2908-2915.	5.1	26

IF # ARTICLE CITATIONS Emulsion behavior control and stability study through decorating silica nano-particle with dimethyldodecylamine oxide at n-hepťane/water interface. Chemical Engineering Science, 2018, 179, 3.8 24 73-82. Experimental Assessment and Modeling of the Solubility of Malonic Acid in Different Solvents. 38 1.5 6 Chemical Engineering and Technology, 2018, 41, 1098-1107. Study on adsorption characteristic of novel nonionic fluorocarbon surfactant (4-hydroxyethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 1 2.1 21-30. Investigation of Active–Inactive Material Interdigitated Aggregates Formed by Wormlike Micelles and 40 2.6 4 Cellulose Nanofiber. Journal of Physical Chemistry B, 2018, 122, 10371-10376. A Study on Preparation and Stabilizing Mechanism of Hydrophobic Silica Nanofluids. Materials, 2018, 39 11, 1385. Rheological properties and formation dynamic filtration damage evaluation of a novel 42 nanoparticle-enhanced VES fracturing system constructed with wormlike micelles. Colloids and 4.7 35 Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 244-252. Insights into the synergy between recyclable magnetic Fe3O4 and zeolite for catalytic 6.1 36 aquathermolysis of heavy crude oil. Applied Surface Science, 2018, 456, 140-146. Stability Mechanism of Nitrogen Foam in Porous Media with Silica Nanoparticles Modified by Cationic 44 3.5 35 Surfactants. Langmuir, 2018, 34, 8015-8023. Novel investigation based on cationic modified starch with residual anionic polymer for enhanced oil 2.4 recovery. Journal of Dispersion Science and Technology, 2017, 38, 199-205. Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery. Journal of 46 4.2 131 Petroleum Science and Engineering, 2017, 153, 283-287. Application of Dispersed Particle Gel to Inhibit Surfactant Adsorption on Sand. Journal of 2.1 Surfactants and Detergents, 2017, 20, 863-871. Synthesis, surface adsorption and micelle formation of a class of morpholinium gemini surfactants. 48 5.8 27 Journal of Industrial and Engineering Chemistry, 2017, 54, 226-233. Investigation on bubble snap-off in 3-D pore-throat micro-structures. Journal of Industrial and 5.8 33 Engineering Chemistry, 2017, 54, 69-74. Investigation of Novel Triple-Responsive Wormlike Micelles. Langmuir, 2017, 33, 4319-4327. 50 3.5 50 Experimental study of bubble breakup process in non-Newtonian fluid in 3-D pore-throat microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535, 130-138. A Novel Nanofluid Based on Fluorescent Carbon Nanoparticles for Enhanced Oil Recovery. Industrial 52 3.7 46 & Engineering Chemistry Research, 2017, 56, 12464-12470. Study on a Novel Cross-Linked Polymer Gel Strengthened with Silica Nanoparticles. Energy & amp; 5.1 95 Fuels, 2017, 31, 9152-9161. The Study of a Novel Nanoparticle-Enhanced Wormlike Micellar System. Nanoscale Research Letters, 54 5.7 30 2017, 12, 431.

YINING WU

YINING WU

#	Article	IF	CITATIONS
55	Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)?. Materials, 2017, 10, 1096.	2.9	33
56	Design and Study of a Novel Thermal-Resistant and Shear-Stable Amphoteric Polyacrylamide in High-Salinity Solution. Polymers, 2017, 9, 296.	4.5	30
57	Synergistic effect of pH-responsive wormlike micelles based on a simple amphiphile. Soft Matter, 2016, 12, 4549-4556.	2.7	22
58	Investigation on Polymer Reutilization Mechanism of Salt-Tolerant Modified Starch on Offshore Oilfield. Energy & Fuels, 2016, 30, 5585-5592.	5.1	12
59	Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Advances, 2016, 6, 778-785.	3.6	21
60	Shear-induced tail breakup of droplets (bubbles) flowing in a straight microfluidic channel. Chemical Engineering Science, 2015, 135, 61-66.	3.8	14
61	Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction. Microfluidics and Nanofluidics, 2015, 18, 19-27.	2.2	48
62	Bubble coalescence at a microfluidic T-junction convergence: from colliding to squeezing. Microfluidics and Nanofluidics, 2014, 16, 275-286.	2.2	26
63	Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matter, 2013, 9, 9792.	2.7	64
64	Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: feedback effect of bubble collision. Microfluidics and Nanofluidics, 2012, 13, 723-733.	2.2	37
65	Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical Engineering Science, 2012, 84, 207-217.	3.8	224
66	Breakup Behaviors of Viscoelastic Polymer Droplets in 3-D Pore Throat Structure Microchannel. Transport in Porous Media, 0, , 1.	2.6	0