Yining Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/901784/publications.pdf

Version: 2024-02-01

		236925	276875
66	1,849	25	41
papers	citations	h-index	g-index
67	67	67	1579
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical Engineering Science, 2012, 84, 207-217.	3.8	224
2	Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery. Journal of Petroleum Science and Engineering, 2017, 153, 283-287.	4.2	131
3	Study on the synergy between silica nanoparticles and surfactants for enhanced oil recovery during spontaneous imbibition. Journal of Molecular Liquids, 2018, 261, 373-378.	4.9	104
4	Study on a Novel Cross-Linked Polymer Gel Strengthened with Silica Nanoparticles. Energy & Samp; Fuels, 2017, 31, 9152-9161.	5.1	95
5	Oil migration in nanometer to micrometer sized pores of tight oil sandstone during dynamic surfactant imbibition with online NMR. Fuel, 2019, 245, 544-553.	6.4	74
6	Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matter, 2013, 9, 9792.	2.7	64
7	Experimental investigation of spontaneous imbibition process of nanofluid in ultralow permeable reservoir with nuclear magnetic resonance. Chemical Engineering Science, 2019, 201, 212-221.	3.8	52
8	Investigation of Novel Triple-Responsive Wormlike Micelles. Langmuir, 2017, 33, 4319-4327.	3.5	50
9	Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction. Microfluidics and Nanofluidics, 2015, 18, 19-27.	2.2	48
10	A Novel Nanofluid Based on Fluorescent Carbon Nanoparticles for Enhanced Oil Recovery. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 12464-12470.	3.7	46
11	Adsorption behaviour of surfactant-nanoparticles at the gas-liquid interface: Influence of the alkane chain length. Chemical Engineering Science, 2019, 206, 203-211.	3.8	41
12	A Study on Preparation and Stabilizing Mechanism of Hydrophobic Silica Nanofluids. Materials, 2018, 11, 1385.	2.9	39
13	Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: feedback effect of bubble collision. Microfluidics and Nanofluidics, 2012, 13, 723-733.	2.2	37
14	Morphological insights into the catalytic aquathermolysis of crude oil with an easily prepared high-efficiency Fe3O4-containing catalyst. Fuel, 2019, 245, 420-428.	6.4	37
15	Insights into the synergy between recyclable magnetic Fe3O4 and zeolite for catalytic aquathermolysis of heavy crude oil. Applied Surface Science, 2018, 456, 140-146.	6.1	36
16	Rheological properties and formation dynamic filtration damage evaluation of a novel nanoparticle-enhanced VES fracturing system constructed with wormlike micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 244-252.	4.7	35
17	Stability Mechanism of Nitrogen Foam in Porous Media with Silica Nanoparticles Modified by Cationic Surfactants. Langmuir, 2018, 34, 8015-8023.	3.5	35
18	Investigation on bubble snap-off in 3-D pore-throat micro-structures. Journal of Industrial and Engineering Chemistry, 2017, 54, 69-74.	5.8	33

#	Article	IF	CITATIONS
19	Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)?. Materials, 2017, 10, 1096.	2.9	33
20	Precisely Tailoring Bubble Morphology in Microchannel by Nanoparticles Self-assembly. Industrial & Self-assembly amp; Engineering Chemistry Research, 2019, 58, 3707-3713.	3.7	32
21	Enhanced oil recovery mechanism by surfactant-silica nanoparticles imbibition in ultra-low permeability reservoirs. Journal of Molecular Liquids, 2022, 348, 118010.	4.9	31
22	The Study of a Novel Nanoparticle-Enhanced Wormlike Micellar System. Nanoscale Research Letters, 2017, 12, 431.	5.7	30
23	Design and Study of a Novel Thermal-Resistant and Shear-Stable Amphoteric Polyacrylamide in High-Salinity Solution. Polymers, 2017, 9, 296.	4.5	30
24	Variations in the diversity of the soil microbial community and structure under various categories of degraded wetland in Sanjiang Plain, northeastern China. Land Degradation and Development, 2021, 32, 2143-2156.	3.9	30
25	The preparation and spontaneous imbibition of carbon-based nanofluid for enhanced oil recovery in tight reservoirs. Journal of Molecular Liquids, 2020, 313, 113564.	4.9	28
26	Synthesis, surface adsorption and micelle formation of a class of morpholinium gemini surfactants. Journal of Industrial and Engineering Chemistry, 2017, 54, 226-233.	5.8	27
27	Bubble coalescence at a microfluidic T-junction convergence: from colliding to squeezing. Microfluidics and Nanofluidics, 2014, 16, 275-286.	2.2	26
28	Enhanced Oil Recovery Study of a New Mobility Control System on the Dynamic Imbibition in a Tight Oil Fracture Network Model. Energy & Samp; Fuels, 2018, 32, 2908-2915.	5.1	26
29	Experimental study of bubble breakup process in non-Newtonian fluid in 3-D pore-throat microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535, 130-138.	4.7	25
30	Novel high-hydrophilic carbon dots from petroleum coke for boosting injection pressure reduction and enhancing oil recovery. Carbon, 2021, 184, 186-194.	10.3	25
31	Emulsion behavior control and stability study through decorating silica nano-particle with dimethyldodecylamine oxide at n-heptane/water interface. Chemical Engineering Science, 2018, 179, 73-82.	3.8	24
32	Synergistic effect of pH-responsive wormlike micelles based on a simple amphiphile. Soft Matter, 2016, 12, 4549-4556.	2.7	22
33	Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Advances, 2016, 6, 778-785.	3.6	21
34	Study on the Reducing Injection Pressure Regulation of Hydrophobic Carbon Nanoparticles. Langmuir, 2020, 36, 3989-3996.	3.5	20
35	Effects of structural properties of alcohol molecules on decomposition of natural gas hydrates: A molecular dynamics study. Fuel, 2020, 268, 117322.	6.4	19
36	Solid-like film formed by nano-silica self-assembly at oil–water interface. Chemical Engineering Science, 2019, 195, 51-61.	3.8	18

#	Article	IF	Citations
37	Size-, Aggregation-, and Oxidization-Dependent Perturbation of Methane Hydrate by Graphene Nanosheets Revealed by Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 13154-13166.	3.1	15
38	Shear-induced tail breakup of droplets (bubbles) flowing in a straight microfluidic channel. Chemical Engineering Science, 2015, 135, 61-66.	3.8	14
39	Investigation on flow characteristic of viscoelasticity fluids in pore-throat structure. Journal of Petroleum Science and Engineering, 2019, 174, 821-832.	4.2	14
40	The construction of anhydride-modified silica nanoparticles (AMSNPs) strengthened wormlike micelles based on strong electrostatic and hydrogen bonding interactions. Journal of Molecular Liquids, 2019, 277, 372-379.	4.9	13
41	Investigation on Polymer Reutilization Mechanism of Salt-Tolerant Modified Starch on Offshore Oilfield. Energy & Difference (2016, 30, 5585-5592.	5.1	12
42	The spontaneous imbibition mechanisms for enhanced oil recovery by gel breaking fluid of clean fracturing fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129568.	4.7	11
43	Probing of the hydrated cation bridges in the oil/brine/silica system via atomic force microscopy and molecular dynamics simulation. Fuel, 2021, 306, 121666.	6.4	10
44	Effect of Silica Nanoparticles on Wormlike Micelles with Different Entanglement Degrees. Journal of Surfactants and Detergents, 2019, 22, 587-595.	2.1	9
45	The formation of satellite droplets in micro-devices due to the rupture of neck filament. Chemical Engineering Research and Design, 2020, 153, 435-442.	5.6	9
46	Study on adsorption characteristic of novel nonionic fluorocarbon surfactant (4-hydroxyethyl) Tj ETQq0 0 0 rgBT 21-30.	Overlock 2.1	10 Tf 50 387
47	The flow behaviors of nanoparticleâ€stabilized bubbles in microchannel: Influence of surface hardening. AICHE Journal, 2020, 66, e16865.	3.6	7
48	Reduction of clean fracturing fluid filtration loss by viscosity enhancement using nanoparticles: Is it feasible?. Chemical Engineering Research and Design, 2020, 156, 414-424.	5.6	7
49	Purification of Recombinant <i>L</i> â€Asparaginase II Using Solventâ€Freezeâ€Out Technology. Chemical Engineering and Technology, 2018, 41, 1080-1085.	1.5	6
50	Experimental Assessment and Modeling of the Solubility of Malonic Acid in Different Solvents. Chemical Engineering and Technology, 2018, 41, 1098-1107.	1.5	6
51	Investigating breakup behaviors of the non-Newtonian fluid: A case study of oil droplet using 3-D pore throat structured microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124330.	4.7	6
52	Viscoelastic surfactant fluids filtration in porous media: A poreâ€scale study. AICHE Journal, 2020, 66, e16229.	3.6	6
53	Study on a Two-dimensional nanomaterial reinforced wormlike micellar system. Journal of Molecular Liquids, 2022, 346, 118236.	4.9	6
54	Flow Patterns of Viscoelastic Fracture Fluids in Porous Media: Influence of Pore-Throat Structures. Polymers, 2019, 11, 1291.	4.5	5

#	Article	IF	CITATIONS
55	Study on the way of destroying hydrated cation bridges by atomic force microscope and molecular dynamics simulation. Journal of Molecular Liquids, 2021, 342, 117453.	4.9	5
56	Probing the mechanism of in situ oil droplet swelling during low salinity water flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128133.	4.7	5
57	Development and Performance Evaluation of a Novel Silica Nanoparticle-Reinforced CO ₂ -Sensitive Fracturing Fluid with High Temperature and Shear Resistance Ability. Energy & Fuels, 2022, 36, 7177-7185.	5.1	5
58	Anionic surfactant based on oil-solid interfacial interaction control for efficient residual oil development. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129396.	4.7	5
59	Investigation of Active–Inactive Material Interdigitated Aggregates Formed by Wormlike Micelles and Cellulose Nanofiber. Journal of Physical Chemistry B, 2018, 122, 10371-10376.	2.6	4
60	Self-Sustained Coalescence–Breakup Cycles of Ferrodrops under a Magnetic Field. Langmuir, 2019, 35, 12028-12034.	3.5	3
61	Preparation of dual network semi-solidified gelled-foam for sealing gas channeling in fractured-vuggy reservoirs. Journal of Petroleum Science and Engineering, 2022, 216, 110687.	4.2	3
62	Novel investigation based on cationic modified starch with residual anionic polymer for enhanced oil recovery. Journal of Dispersion Science and Technology, 2017, 38, 199-205.	2.4	2
63	Application of Dispersed Particle Gel to Inhibit Surfactant Adsorption on Sand. Journal of Surfactants and Detergents, 2017, 20, 863-871.	2.1	2
64	Flow behaviors of a viscoelastic polymer solution at 3D micro pore-throat structure. Journal of Dispersion Science and Technology, 2019, 40, 1795-1803.	2.4	2
65	Modulation of bubble flow resistance and surface fluidity :the effect of nanoparticle packing density at gas–liquid interface. Journal of Molecular Liquids, 2022, 350, 118574.	4.9	2
66	Breakup Behaviors of Viscoelastic Polymer Droplets in 3-D Pore Throat Structure Microchannel. Transport in Porous Media, $0, 1$.	2.6	0