David F Blair

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9017589/david-f-blair-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,897 46 45 33 g-index h-index citations papers 46 8.9 4,354 5.33 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
45	Control of membrane barrier during bacterial type-III protein secretion. <i>Nature Communications</i> , 2021 , 12, 3999	17.4	2
44	Allosteric Priming of E. Poli CheY by the Flagellar Motor Protein Flim. Biophysical Journal, 2020, 119, 1	10 8: ∮12	<u>?</u> 22
43	Organization of the Flagellar Switch Complex of Bacillus subtilis. <i>Journal of Bacteriology</i> , 2019 , 201,	3.5	15
42	Type-III secretion pore formed by flagellar protein FliP. <i>Molecular Microbiology</i> , 2018 , 107, 94-103	4.1	18
41	Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor. <i>Structure</i> , 2017 , 25, 317-328	5.2	40
40	Mechanism of type-III protein secretion: Regulation of FlhA conformation by a functionally critical charged-residue cluster. <i>Molecular Microbiology</i> , 2017 , 104, 234-249	4.1	42
39	Architecture of the Flagellar Switch Complex of Escherichia coli: Conformational Plasticity of FliG and Implications for Adaptive Remodeling. <i>Journal of Molecular Biology</i> , 2017 , 429, 1305-1320	6.5	25
38	Biogenesis of the Flagellar Switch Complex in Escherichia coli: Formation of Sub-Complexes Independently of the Basal-Body MS-Ring. <i>Journal of Molecular Biology</i> , 2017 , 429, 2353-2359	6.5	7
37	Function of the Histone-Like Protein H-NS in Motility of Escherichia coli: Multiple Regulatory Roles Rather than Direct Action at the Flagellar Motor. <i>Journal of Bacteriology</i> , 2015 , 197, 3110-20	3.5	17
36	Loose coupling in the bacterial flagellar motor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4755-60	11.5	10
35	Adjusting the spokes of the flagellar motor with the DNA-binding protein H-NS. <i>Journal of Bacteriology</i> , 2011 , 193, 5914-22	3.5	14
34	A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 17171-6	11.5	64
33	Architecture of the flagellar rotor. <i>EMBO Journal</i> , 2011 , 30, 2962-71	13	75
32	Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli. <i>Journal of Biological Chemistry</i> , 2010 , 285, 675-84	5.4	32
31	Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 9370-5	11.5	123
30	The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. <i>Molecular Cell</i> , 2010 , 38, 128-39	17.6	309
29	Energy source of flagellar type III secretion. <i>Nature</i> , 2008 , 451, 489-92	50.4	249

(1999-2008)

28	Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change. <i>Biochemistry</i> , 2008 , 47, 11332-9	3.2	51
27	Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. <i>Journal of Bacteriology</i> , 2007 , 189, 305-12	3.5	75
26	Fine structure of a fine machine. <i>Journal of Bacteriology</i> , 2006 , 188, 7033-5	3.5	7
25	Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. <i>Journal of Bacteriology</i> , 2006 , 188, 1466-72	3.5	66
24	Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 1188	6 ⁻⁹ 1 ⁵	89
23	Mutational analysis of the flagellar rotor protein FliN: identification of surfaces important for flagellar assembly and switching. <i>Journal of Bacteriology</i> , 2006 , 188, 5240-8	3.5	41
22	Organization of FliN subunits in the flagellar motor of Escherichia coli. <i>Journal of Bacteriology</i> , 2006 , 188, 2502-11	3.5	50
21	Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. <i>Journal of Bacteriology</i> , 2005 , 187, 2890-902	3.5	104
20	FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking. <i>Journal of Bacteriology</i> , 2005 , 187, 5640-7	3.5	41
19	Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. <i>Biochemistry</i> , 2004 , 43, 35-45	3.2	121
18	Solubilization and purification of the MotA/MotB complex of Escherichia coli. <i>Biochemistry</i> , 2004 , 43, 26-34	3.2	140
17	The bacterial flagellar motor: structure and function of a complex molecular machine. <i>International Review of Cytology</i> , 2004 , 233, 93-134		177
16	Flagellar movement driven by proton translocation. FEBS Letters, 2003, 545, 86-95	3.8	152
15	Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. <i>EMBO Journal</i> , 2002 , 21, 3225-34	13	117
14	Conformational change in the stator of the bacterial flagellar motor. <i>Biochemistry</i> , 2001 , 40, 13041-50	3.2	188
13	Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H(+) channels in the stator Complex. <i>Biochemistry</i> , 2001 , 40, 13051-9	3.2	104
12	Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. <i>Nature</i> , 1999 , 400, 472-5	50.4	93
11	Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. Journal of Bacteriology, 1999 , 181, 3542-51	3.5	73

10	Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. <i>Journal of Bacteriology</i> , 1998 , 180, 2729-35	3.5	172
9	Domain analysis of the FliM protein of Escherichia coli. <i>Journal of Bacteriology</i> , 1998 , 180, 5580-90	3.5	55
8	Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. <i>Journal of Molecular Biology</i> , 1997 , 266, 733-44	6.5	127
7	Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. <i>Journal of Molecular Biology</i> , 1997 , 273, 428-39	6.5	114
6	Motility protein complexes in the bacterial flagellar motor. <i>Journal of Molecular Biology</i> , 1996 , 261, 209-	-161 5	110
5	Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. <i>Biochemistry</i> , 1995 , 34, 9166-71	3.2	104
4	Membrane topology of the MotA protein of Escherichia coli. <i>Journal of Molecular Biology</i> , 1995 , 251, 237-42	6.5	114
3	Mutations in the MotA protein of Escherichia coli reveal domains critical for proton conduction. Journal of Molecular Biology, 1991 , 221, 1433-42	6.5	86
2	The MotA protein of E. coli is a proton-conducting component of the flagellar motor. <i>Cell</i> , 1990 , 60, 439	- 40 .2	273
1	Controlling membrane barrier during bacterial type-III protein secretion		1