
Chris Bowler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9017361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
2	Structure and function of the global ocean microbiome. Science, 2015, 348, 1261359.	12.6	2,137
3	The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science, 2004, 306, 79-86.	12.6	1,862
4	Eukaryotic plankton diversity in the sunlit ocean. Science, 2015, 348, 1261605.	12.6	1,551
5	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	27.8	1,458
6	Determinants of community structure in the global plankton interactome. Science, 2015, 348, 1262073.	12.6	842
7	Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11647-11652.	7.1	809
8	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	27.8	774
9	Plankton networks driving carbon export in the oligotrophic ocean. Nature, 2016, 532, 465-470.	27.8	670
10	Patterns and ecological drivers of ocean viral communities. Science, 2015, 348, 1261498.	12.6	617
11	Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO Journal, 2011, 30, 1928-1938.	7.8	600
12	The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7705-7710.	7.1	563
13	Insights into global diatom distribution and diversity in the world's ocean. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1516-25.	7.1	561
14	Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell, 2019, 177, 1109-1123.e14.	28.9	541
15	The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Science, 2000, 5, 241-246.	8.8	487
16	Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 2011, 473, 203-207.	27.8	453
17	Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience, 2018, 11, 27-37.	12.9	451
18	Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 2005, 23, 890-895.	17.5	450

#	Article	IF	CITATIONS
19	Whole-cell response of the pennate diatom <i>Phaeodactylum tricornutum</i> to iron starvation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10438-10443.	7.1	414
20	Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9897-9902.	7.1	413
21	A Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis. PLoS ONE, 2008, 3, e1426.	2.5	394
22	Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms. Science, 2009, 324, 1724-1726.	12.6	370
23	Chromatin techniques for plant cells. Plant Journal, 2004, 39, 776-789.	5.7	359
24	A Holistic Approach to Marine Eco-Systems Biology. PLoS Biology, 2011, 9, e1001177.	5.6	353
25	Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature, 2017, 541, 536-540.	27.8	332
26	Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature, 2015, 524, 366-369.	27.8	311
27	A global ocean atlas of eukaryotic genes. Nature Communications, 2018, 9, 373.	12.8	297
28	Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene, 2007, 406, 23-35.	2.2	293
29	Membrane Glycerolipid Remodeling Triggered by Nitrogen and Phosphorus Starvation in <i>Phaeodactylum tricornutum</i> . Plant Physiology, 2015, 167, 118-136.	4.8	286
30	Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell, 2019, 179, 1084-1097.e21.	28.9	271
31	Phenotype of the Tomato high pigment-2 Mutant Is Caused by a Mutation in the Tomato Homolog of DEETIOLATED1. Plant Cell, 1999, 11, 145-157.	6.6	270
32	Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. Cell, 2019, 179, 1068-1083.e21.	28.9	268
33	Transformation of Nonselectable Reporter Genes in Marine Diatoms. Marine Biotechnology, 1999, 1, 239-251.	2.4	266
34	Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Research, 2009, 37, e96-e96.	14.5	264
35	An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18214-18219.	7.1	258
36	A Stress Surveillance System Based on Calcium and Nitric Oxide in Marine Diatoms. PLoS Biology, 2006, 4, e60.	5.6	248

#	Article	IF	CITATIONS
37	Tara Oceans: towards global ocean ecosystems biology. Nature Reviews Microbiology, 2020, 18, 428-445.	28.6	227
38	Genetic and phenotypic characterization of <i>Phaeodactylum tricornutum</i> (Bacillariophyceae) accessions ¹ . Journal of Phycology, 2007, 43, 992-1009.	2.3	209
39	Oceanographic and Biogeochemical Insights from Diatom Genomes. Annual Review of Marine Science, 2010, 2, 333-365.	11.6	189
40	Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Molecular Genetics and Genomics, 2007, 277, 427-439.	2.1	184
41	Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Reports, 2009, 10, 655-661.	4.5	168
42	Perception of Environmental Signals by a Marine Diatom. Science, 2000, 288, 2363-2366.	12.6	166
43	Integrative Transcript and Metabolite Analysis of Nutritionally Enhanced <i>DE-ETIOLATED1</i> Downregulated Tomato Fruit. Plant Cell, 2010, 22, 1190-1215.	6.6	160
44	Environmental characteristics of Agulhas rings affect interocean plankton transport. Science, 2015, 348, 1261447.	12.6	158
45	The Photomorphogenesis Regulator DET1 Binds the Amino-Terminal Tail of Histone H2B in a Nucleosome Context. Current Biology, 2002, 12, 1529-1534.	3.9	157
46	Prospects in diatom research. Current Opinion in Biotechnology, 2005, 16, 180-186.	6.6	154
47	Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nature Communications, 2018, 9, 953.	12.8	150
48	Oil Accumulation by the Oleaginous Diatom <i>Fistulifera solaris</i> as Revealed by the Genome and Transcriptome. Plant Cell, 2015, 27, 162-176.	6.6	149
49	Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific Data, 2017, 4, 170093.	5.3	147
50	Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynthesis Research, 2011, 109, 205-221.	2.9	146
51	AUREOCHROME1a-Mediated Induction of the Diatom-Specific Cyclin <i>dsCYC2</i> Controls the Onset of Cell Division in Diatoms (<i>Phaeodactylum tricornutum</i>). Plant Cell, 2013, 25, 215-228.	6.6	136
52	Methylcrotonyl-CoA Carboxylase Regulates Triacylglycerol Accumulation in the Model Diatom <i>Phaeodactylum tricornutum</i> Å Â Â. Plant Cell, 2014, 26, 1681-1697.	6.6	136
53	Evolutionary Origins and Functions of the Carotenoid Biosynthetic Pathway in Marine Diatoms. PLoS ONE, 2008, 3, e2896.	2.5	134
54	The evolution of diatoms and their biogeochemical functions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160397.	4.0	134

#	Article	IF	CITATIONS
55	REVEALING THEMOLECULARSECRETS OFMARINEDIATOMS. Annual Review of Plant Biology, 2002, 53, 109-130.	18.7	133
56	CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development inArabidopsis thaliana. Plant Journal, 2006, 47, 591-603.	5.7	131
57	Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Scientific Reports, 2018, 8, 4834.	3.3	131
58	Iron Utilization in Marine Cyanobacteria and Eukaryotic Algae. Frontiers in Microbiology, 2012, 3, 43.	3.5	130
59	Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. ELife, 2017, 6, .	6.0	129
60	Biosynthetic potential of the global ocean microbiome. Nature, 2022, 607, 111-118.	27.8	128
61	A Diatom Gene Regulating Nitric-Oxide Signaling and Susceptibility to Diatom-Derived Aldehydes. Current Biology, 2008, 18, 895-899.	3.9	126
62	Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytologist, 2010, 188, 52-66.	7.3	126
63	Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant Journal, 2011, 66, 45-57.	5.7	125
64	Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science, 2022, 376, 156-162.	12.6	124
65	Comparative Genomics of the Pennate Diatom Phaeodactylum tricornutum. Plant Physiology, 2005, 137, 500-513.	4.8	122
66	Genome Properties of the Diatom Phaeodactylum tricornutum. Plant Physiology, 2002, 129, 993-1002.	4.8	119
67	Evolution of galactoglycerolipid biosynthetic pathways – From cyanobacteria to primary plastids and from primary to secondary plastids. Progress in Lipid Research, 2014, 54, 68-85.	11.6	118
68	Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. New Phytologist, 2016, 210, 497-510.	7.3	118
69	Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience, 2019, 8, .	6.4	118
70	Histone H2B Monoubiquitination Facilitates the Rapid Modulation of Gene Expression during Arabidopsis Photomorphogenesis. PLoS Genetics, 2012, 8, e1002825.	3.5	115
71	An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Current Opinion in Plant Biology, 2006, 9, 264-273.	7.1	114
72	Phytochromeâ€mediated photoperception and signal transduction in higher plants. EMBO Reports, 2002, 3, 1042-1048.	4.5	113

#	Article	IF	CITATIONS
73	Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nature Communications, 2013, 4, 2091.	12.8	113
74	Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics, 2009, 10, 624.	2.8	112
75	Characterization of two members of the cryptochrome/photolyase family from <i>Ostreococcus tauri</i> provides insights into the origin and evolution of cryptochromes. Plant, Cell and Environment, 2010, 33, 1614-1626.	5.7	108
76	Chloroplast-mitochondria cross-talk in diatoms. Journal of Experimental Botany, 2012, 63, 1543-1557.	4.8	108
77	An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum. Genome Biology, 2015, 16, 102.	8.8	107
78	Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Communications Biology, 2021, 4, 604.	4.4	107
79	Diatom Phytochromes Reveal the Existence of Far-Red-Light-Based Sensing in the Ocean. Plant Cell, 2016, 28, 616-628.	6.6	105
80	Extreme Diversity of Diplonemid Eukaryotes in the Ocean. Current Biology, 2016, 26, 3060-3065.	3.9	105
81	Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Science Advances, 2018, 4, eaar4536.	10.3	103
82	Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nature Communications, 2018, 9, 310.	12.8	101
83	Digital expression profiling of novel diatom transcripts provides insight into their biological functions. Genome Biology, 2010, 11, R85.	9.6	97
84	Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 2020, 17, 481-494.	19.0	97
85	Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6914-6923.	7.1	96
86	Phytoplankton in the <i>Tara</i> Ocean. Annual Review of Marine Science, 2020, 12, 233-265.	11.6	96
87	Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biology, 2010, 11, R17.	9.6	91
88	A Novel Protein, Ubiquitous in Marine Phytoplankton, Concentrates Iron at the Cell Surface and Facilitates Uptake. Current Biology, 2015, 25, 364-371.	3.9	90
89	Light signaling controls nuclear architecture reorganization during seedling establishment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2836-44.	7.1	90
90	IDENTIFICATION AND COMPARATIVE GENOMIC ANALYSIS OF SIGNALING AND REGULATORY COMPONENTS IN THE DIATOMTHALASSIOSIRA PSEUDONANA. Journal of Phycology, 2007, 43, 585-604.	2.3	87

#	Article	IF	CITATIONS
91	Physiological and Molecular Evidence that Environmental Changes Elicit Morphological Interconversion in the Model Diatom Phaeodactylum tricornutum. Protist, 2011, 162, 462-481.	1.5	84
92	Protocol: Chromatin immunoprecipitation (ChIP) methodology to investigate histone modifications in two model diatom species. Plant Methods, 2012, 8, 48.	4.3	81
93	Microbial oceanography in a sea of opportunity. Nature, 2009, 459, 180-184.	27.8	79
94	Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nature Ecology and Evolution, 2020, 4, 1639-1649.	7.8	78
95	Community‣evel Responses to Iron Availability in Open Ocean Plankton Ecosystems. Global Biogeochemical Cycles, 2019, 33, 391-419.	4.9	76
96	The Diatom EST Database. Nucleic Acids Research, 2004, 33, D344-D347.	14.5	75
97	Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nature Communications, 2016, 7, 11071.	12.8	72
98	Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics, 2022, 2, 100123.	6.5	70
99	Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by postâ€transcriptional gene silencing. Plant Journal, 2004, 40, 344-354.	5.7	69
100	Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Research, 2009, 37, D1001-D1005.	14.5	69
101	Evolution and Functional Diversification of Fructose Bisphosphate Aldolase Genes in Photosynthetic Marine Diatoms. Molecular Biology and Evolution, 2012, 29, 367-379.	8.9	68
102	Spectroâ^'Temporal Characterization of the Photoactivation Mechanism of Two New Oxidized Cryptochrome/Photolyase Photoreceptors. Journal of the American Chemical Society, 2010, 132, 4935-4945.	13.7	67
103	PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing. BMC Bioinformatics, 2016, 17, 261.	2.6	63
104	Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum. Algal Research, 2016, 15, 50-58.	4.6	63
105	DET1-mediated degradation of a SACA-like deubiquitination module controls H2Bub homeostasis. ELife, 2018, 7, .	6.0	63
106	Exploring Bioinorganic Pattern Formation in Diatoms. A Story of Polarized Trafficking. Plant Physiology, 2001, 127, 1339-1345.	4.8	61
107	Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nature Communications, 2021, 12, 4160.	12.8	58
108	Semi-quantitative RT-PCR analysis of photoregulated gene expression in marine diatoms. Plant Molecular Biology, 1999, 40, 1031-1044.	3.9	57

#	Article	IF	CITATIONS
109	Bioprospecting Marine Plankton. Marine Drugs, 2013, 11, 4594-4611.	4.6	57
110	Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14652-14657.	7.1	57
111	Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nature Microbiology, 2021, 6, 1561-1574.	13.3	57
112	Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. Genome Biology, 2019, 20, 100.	8.8	56
113	A modified Gateway cloning strategy for overexpressing tagged proteins in plants. Plant Methods, 2008, 4, 3.	4.3	54
114	Environmental vulnerability of the global ocean epipelagic plankton community interactome. Science Advances, 2021, 7, .	10.3	54
115	The Evolution and Function of Blue and Red Light Photoreceptors. Current Topics in Developmental Biology, 2005, 68, 317-350.	2.2	52
116	Ultrastructure and Membrane Traffic During Cell Division in the Marine Pennate Diatom Phaeodactylum tricornutum. Protist, 2015, 166, 506-521.	1.5	51
117	Downregulation of mitochondrial alternative oxidase affects chloroplast function, redox status and stress response in a marine diatom. New Phytologist, 2019, 221, 1303-1316.	7.3	51
118	A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom <i>Phaeodactylum tricornutum</i> . ISME Journal, 2020, 14, 347-363.	9.8	50
119	Enhanced NADPH production in the pentose phosphate pathway accelerates lipid accumulation in the oleaginous diatom Fistulifera solaris. Algal Research, 2017, 23, 126-134.	4.6	49
120	Mitosis in diatoms: rediscovering an old model for cell division. BioEssays, 2009, 31, 874-884.	2.5	48
121	The Tara Pacific expedition—A pan-ecosystemic approach of the "-omics―complexity of coral reef holobionts across the Pacific Ocean. PLoS Biology, 2019, 17, e3000483.	5.6	48
122	The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2to maintain genome integrity upon UV stress. EMBO Journal, 2011, 30, 1162-1172.	7.8	47
123	iTRAQ-Based Proteomic Analysis of the Metabolism Mechanism Associated with Silicon Response in the Marine Diatom <i>Thalassiosira pseudonana</i> . Journal of Proteome Research, 2014, 13, 720-734.	3.7	47
124	Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. ELife, 2017, 6, .	6.0	45
125	Genomic insights into photosynthesis in eukaryotic phytoplankton. Trends in Plant Science, 2010, 15, 565-572.	8.8	44
126	Expanding Tara Oceans Protocols for Underway, Ecosystemic Sampling of the Ocean-Atmosphere Interface During Tara Pacific Expedition (2016–2018). Frontiers in Marine Science, 2019, 6, .	2.5	42

#	Article	IF	CITATIONS
127	det1-1-induced UV-C hyposensitivity through UVR3 and PHR1 photolyase gene over-expression. Plant Journal, 2010, 63, 392-404.	5.7	41
128	Homoeolog expression bias in allopolyploid oleaginous marine diatom Fistulifera solaris. BMC Genomics, 2018, 19, 330.	2.8	41
129	Ubiquitous abundance distribution of non-dominant plankton across the global ocean. Nature Ecology and Evolution, 2018, 2, 1243-1249.	7.8	41
130	Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME Journal, 2022, 16, 927-936.	9.8	41
131	Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science, 2021, 374, 594-599.	12.6	41
132	Diversity and ecological footprint of Global Ocean RNA viruses. Science, 2022, 376, 1202-1208.	12.6	41
133	Clade-specific diversification dynamics of marine diatoms since the Jurassic. Nature Ecology and Evolution, 2018, 2, 1715-1723.	7.8	40
134	Metabolic Innovations Underpinning the Origin and Diversification of the Diatom Chloroplast. Biomolecules, 2019, 9, 322.	4.0	39
135	A Potential Role for Epigenetic Processes in the Acclimation Response to Elevated pCO2 in the Model Diatom Phaeodactylum tricornutum. Frontiers in Microbiology, 2018, 9, 3342.	3.5	39
136	Diatoms Are Selective Segregators in Global Ocean Planktonic Communities. MSystems, 2020, 5, .	3.8	38
137	Cellular Responses Associated with ROS Production and Cell Fate Decision in Early Stress Response to Iron Limitation in the Diatom <i>Thalassiosira pseudonana</i> . Journal of Proteome Research, 2014, 13, 5510-5523.	3.7	37
138	Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
139	Diatom cell division in an environmental context. Current Opinion in Plant Biology, 2010, 13, 623-630.	7.1	36
140	Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton. BMC Genomics, 2016, 17, 319.	2.8	35
141	Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages. ISME Journal, 2016, 10, 1134-1146.	9.8	35
142	Recent progress in diatom genomics and epigenomics. Current Opinion in Plant Biology, 2017, 36, 46-55.	7.1	33
143	Molecular Tools for Discovering the Secrets of Diatoms. BioScience, 2009, 59, 757-765.	4.9	32
144	Observational Needs Supporting Marine Ecosystems Modeling and Forecasting: From the Global Ocean to Regional and Coastal Systems. Frontiers in Marine Science, 2019, 6, .	2.5	32

#	Article	IF	CITATIONS
145	Modelling plankton ecosystems in the meta-omics era. Are we ready?. Marine Genomics, 2017, 32, 1-17.	1.1	29
146	Competition between Silicifiers and Non-silicifiers in the Past and Present Ocean and Its Evolutionary Impacts. Frontiers in Marine Science, 2018, 5, .	2.5	29
147	Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Current Biology, 2021, 31, 3221-3232.e9.	3.9	29
148	A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Molecular Ecology Resources, 2023, 23, 16-40.	4.8	29
149	Stemming Epigenetics in Marine Stramenopiles. Current Genomics, 2011, 12, 357-370.	1.6	27
150	Neobodonids are dominant kinetoplastids in the global ocean. Environmental Microbiology, 2018, 20, 878-889.	3.8	27
151	Priorities for ocean microbiome research. Nature Microbiology, 2022, 7, 937-947.	13.3	27
152	The epibiotic life of the cosmopolitan diatom <i>Fragilariopsis doliolus</i> on heterotrophic ciliates in the open ocean. ISME Journal, 2018, 12, 1094-1108.	9.8	26
153	PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 2020, 11, 590949.	3.6	26
154	Large scale patterns of marine diatom richness: Drivers and trends in a changing ocean. Global Ecology and Biogeography, 2020, 29, 1915-1928.	5.8	26
155	Probing the Diversity of Polycomb and Trithorax Proteins in Cultured and Environmentally Sampled Microalgae. Frontiers in Marine Science, 2020, 7, .	2.5	26
156	Iron metabolism strategies in diatoms. Journal of Experimental Botany, 2021, 72, 2165-2180.	4.8	26
157	Carbon Dioxide Concentration Mechanisms in Natural Populations of Marine Diatoms: Insights From Tara Oceans. Frontiers in Plant Science, 2021, 12, 657821.	3.6	26
158	The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes. Nucleic Acids Research, 2022, 50, W516-W526.	14.5	26
159	The Implications of Eco-Evolutionary Processes for the Emergence of Marine Plankton Community Biogeography. American Naturalist, 2017, 190, 116-130.	2.1	25
160	Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Scientific Reports, 2020, 10, 9449.	3.3	25
161	Macroscale patterns of oceanic zooplankton composition and size structure. Scientific Reports, 2021, 11, 15714.	3.3	24
162	Tryptophan Biosynthesis in Stramenopiles: Eukaryotic Winners in the Diatom Complex Chloroplast. Journal of Molecular Evolution, 2007, 65, 496-511.	1.8	23

#	Article	IF	CITATIONS
163	Leveraging metabolomics for functional investigations in sequenced marine diatoms. Trends in Plant Science, 2012, 17, 395-403.	8.8	23
164	Characterisation of alleles of tomato light signalling genes generated by TILLING. Phytochemistry, 2012, 79, 78-86.	2.9	23
165	Meta-Omics Reveals Genetic Flexibility of Diatom Nitrogen Transporters in Response to Environmental Changes. Molecular Biology and Evolution, 2019, 36, 2522-2535.	8.9	23
166	Adhesion molecules from the diatom <i>Phaeodactylum tricornutum</i> (Bacillariophyceae): genomic identification by aminoâ€acid profiling and in vivo analysis. Journal of Phycology, 2014, 50, 837-849.	2.3	21
167	Comparative characterization of putative chitin deacetylases from <i>Phaeodactylum tricornutum</i> and <i>Thalassiosira pseudonana</i> highlights the potential for distinct chitinâ€based metabolic processes in diatoms. New Phytologist, 2019, 221, 1890-1905.	7.3	21
168	When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems. Journal of Plankton Research, 2015, 37, 28-47.	1.8	20
169	Genome wide natural variation of H3K27me3 selectively marks genes predicted to be important for cell differentiation in <i>Phaeodactylum tricornutum</i> . New Phytologist, 2021, 229, 3208-3220.	7.3	19
170	Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus tauri. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 38-48.	3.8	18
171	A Gene in the Process of Endosymbiotic Transfer. PLoS ONE, 2010, 5, e13234.	2.5	18
172	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	1.1	18
173	Paleo-diatom composition from Santa Barbara Basin deep-sea sediments: a comparison of <i>18S-V9</i> and <i>diat-rbcL</i> metabarcoding vs shotgun metagenomics. ISME Communications, 2021, 1, .	4.2	18
174	Secondary Plastids of Stramenopiles. Advances in Botanical Research, 2017, 84, 57-103.	1.1	17
175	Computational ecoâ€systems biology in <i><scp>T</scp>ara </i> <scp>O</scp> ceans: translating data into knowledge. Molecular Systems Biology, 2015, 11, 809.	7.2	16
176	Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. PLoS ONE, 2017, 12, e0184849.	2.5	16
177	Intraspecific Diversity in the Cold Stress Response of Transposable Elements in the Diatom Leptocylindrus aporus. Genes, 2020, 11, 9.	2.4	16
178	Global identification of a marine diatom long noncoding natural antisense transcripts (NATs) and their response to phosphate fluctuations. Scientific Reports, 2020, 10, 14110.	3.3	15
179	Marine microbial biodiversity, bioinformatics and biotechnology (M2B3) data reporting and service standards. Standards in Genomic Sciences, 2015, 10, 20.	1.5	14
180	Functional characterization of the diatom cyclin-dependent kinase A2 as a mitotic regulator reveals plant-like properties in a non-green lineage. BMC Plant Biology, 2015, 15, 86.	3.6	14

#	Article	IF	CITATIONS
181	Progressive and Biased Divergent Evolution Underpins the Origin and Diversification of Peridinin Dinoflagellate Plastids. Molecular Biology and Evolution, 2016, 34, msw235.	8.9	13
182	Genome-wide analysis of allele-specific expression of genes in the model diatom Phaeodactylum tricornutum. Scientific Reports, 2021, 11, 2954.	3.3	11
183	Contribution of genomeâ€scale metabolic modelling to niche theory. Ecology Letters, 2022, 25, 1352-1364.	6.4	11
184	Histone extraction protocol from the two model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Marine Genomics, 2014, 13, 21-25.	1.1	10
185	Photoantenna in two cryptochrome–photolyase proteins from O. tauri: Presence, nature and ultrafast photoinduced dynamics. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 234, 135-145.	3.9	9
186	Full-Length Transcriptome of Thalassiosira weissflogii as a Reference Resource and Mining of Chitin-Related Genes. Marine Drugs, 2021, 19, 392.	4.6	9
187	Phaeodactylum tricornutum. Trends in Genetics, 2019, 35, 706-707.	6.7	8
188	Comparative ecophysiology and genomics of the toxic unicellular alga <i>Fibrocapsa japonica</i> . New Phytologist, 2010, 185, 446-458.	7.3	7
189	Photomorphogenesis, B-Box Transcription Factors, and the Legacy of Magnus Holm. Plant Cell, 2013, 25, 1192-1195.	6.6	7
190	Physiological and molecular responses to ocean acidification among strains of a model diatom. Limnology and Oceanography, 2020, 65, 2926-2936.	3.1	7
191	Engineered chlorophyll catabolism conferring predator resistance for microalgal biomass production. Metabolic Engineering, 2021, 66, 79-86.	7.0	7
192	Complex Response of the Chlorarachniophyte Bigelowiella natans to Iron Availability. MSystems, 2021, 6, .	3.8	5
193	Marine DNA Viral Macro-and Micro-Diversity From Pole to Pole. SSRN Electronic Journal, 2019, , .	0.4	4
194	Coupling Imaging and Omics in Plankton Surveys: State-of-the-Art, Challenges, and Future Directions. Frontiers in Marine Science, 2022, 9, .	2.5	4
195	Being Selective in the <i>Prochlorococcus</i> Collective. Science, 2014, 344, 366-367.	12.6	3
196	Exploration of marine phytoplankton: from their historical appreciation to the omics era. Journal of Plankton Research, 0, , .	1.8	2
197	Global marine phytoplankton revealed by the Tara Oceans expedition. , 2022, , 531-561.		2
198	The possible fates of <i>Fragilariopsis cylindrus</i> (polar diatom) cells exposed to prolonged darkness. Journal of Phycology, 2022, 58, 281-296.	2.3	2

#	Article	IF	CITATIONS
199	The molecular life of diatoms. Marine Genomics, 2014, 16, 1-3.	1.1	1
200	Re-print of "Histone extraction protocol from the two model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana". Marine Genomics, 2014, 16, 67-71.	1.1	1
201	An Integrated View of Diatom Interactions. , 2022, , 59-86.		1
202	Dynamic Cell Imaging: application to the diatom <i>Phaeodactylum tricornutum</i> under environmental stresses. European Journal of Phycology, 2023, 58, 145-155.	2.0	0