74

papers

81

all docs

623734

918 14
citations h-index
81 81
docs citations times ranked

552781
26

g-index

220

citing authors

10

12

14

16

18

ARTICLE IF CITATIONS

Analysis and Transformation of Constrained Horn Clauses for Program Verification. Theory and
Practice of Logic Programming, 2022, 22, 974-1042.

Removing Algebraic Data Types from Constrained Horn Clauses Using Difference Predicates. Lecture

Notes in Computer Science, 2020, , 83-102. 1.3 8

Solving Horn Clauses on Inductive Data Types Without Induction 4€“ ERRATUM. Theory and Practice of
Logic Programming, 2019, 19, 629.

Semantics and Controllability of Time-Aware Business Processes®. Fundamenta Informaticae, 2019, 165,
205-244. o4 2

Property-Based Test Case Generators for Free. Lecture Notes in Computer Science, 2019, , 186-206.

Predicate Pairing for program verification. Theory and Practice of Logic Programming, 2018, 18, 126-166. 15 9

Solving Horn Clauses on Inductive Data Types Without Induction. Theory and Practice of Logic
Programming, 2018, 18, 452-469.

Predicate Pairing with Abstraction for Relational Verification. Lecture Notes in Computer Science,

2018, , 289-305. 1.3 2

Program Verification using Constraint Handling Rules and Array Constraint Generalizations*.
Fundamenta Informaticae, 2017, 150, 73-117.

Verification of Time-Aware Business Processes Using Constrained Horn Clauses. Lecture Notes in

Computer Science, 2017, , 38-55. 1.3 2

Verifying Controllability of Time-Aware Business Processes. Lecture Notes in Computer Science, 2017, ,
103-118.

Relational Verification Through Horn Clause Transformation. Lecture Notes in Computer Science,

2016,, 147-169. 1.3 22

Proving correctness of imperative programs by linearizing constrained Horn clauses. Theory and
Practice of Logic Programming, 2015, 15, 635-650.

A Rule-based Verification Strategy for Array Manipulating Programs. Fundamenta Informaticae, 2015,

140, 329-355. 04 o

VeriMAP: A Tool for Verifying Programs through Transformations. Lecture Notes in Computer
Science, 2014, , 568-574.

Behavioral Reasoning on Semantic Business Processes in a Rule-Based Framework. Communications in

Computer and Information Science, 2014, ,293-313. 0.5 6

Verifying Array Programs by Transforming Verification Conditions. Lecture Notes in Computer

Science, 2014, , 182-202.

Verifying programs via iterated specialization. , 2013, , . 11

MAURIZIO PROIETTI

ARTICLE IF CITATIONS

Controlling Polyvariance for Specialization-based Verification. Fundamenta Informaticae, 2013, 124,

483-502.

20 Proving Theorems by Program Transformation. Fundamenta Informaticae, 2013, 127, 115-134. 0.4 3

Generalization strategies for the verification of infinite state systems. Theory and Practice of Logic
Programming, 2013, 13, 175-199.

A Semantic Framework for Knowledge Management in Virtual Innovation Factories. International

22 Journal of Information System Modeling and Design, 2013, 4, 70-92.

11 14

Specialization with Constrained Generalization for Software Model Checking. Lecture Notes in
Computer Science, 2013, , 51-70.

Synthesizing Concurrent Programs Using Answer Set Programming. Fundamenta Informaticae, 2012,

24120, 205-229.

0.4 4

Improving Reachability Analysis of Infinite State Systems by Specialization. Fundamenta Informaticae,
2012, 119, 281-300.

Constraint-based correctness proofs for logic program transformations. Formal Aspects of

26 Computing, 2012, 24, 569-594.

1.8 4

Ontology-Based Querying of Composite Services. Lecture Notes in Computer Science, 2012, , 159-180.

Using Real Relaxations during Program Specialization. Lecture Notes in Computer Science, 2012, ,
28 106122, 13 0

Querying Semantically Enriched Business Processes. Lecture Notes in Computer Science, 2011, , 294-302.

Program Specialization for Verifying Infinite State Systems: An Experimental Evaluation. Lecture Notes

30 in Computer Science, 2011, , 164-183.

1.3 6

Improving Reachability Analysis of Infinite State Systems by Specialization. Lecture Notes in Computer
Science, 2011, , 165-179.

Transformations of logic programs on infinite lists. Theory and Practice of Logic Programming, 2010,
82 10,383399. L5 °

The Transformational Approach to Program Development. Lecture Notes in Computer Science, 2010, ,
112-135.

Deciding Full Branching Time Logic by Program Transformation. Lecture Notes in Computer Science,
3 2010, 521 13 7

A Folding Rule for Eliminating Existential Variables from Constraint Logic Programs. Fundamenta

Informaticae, 2009, 96, 373-393.

Totally correct logic program transformations viaAwell-founded annotations. Higher-Order and

36 Symbolic Computation, 2008, 21, 193-234.

0.3 1

38

40

42

44

46

48

50

52

54

MAURIZIO PROIETTI

ARTICLE IF CITATIONS

A Folding Algorithm for Eliminating Existential Variables from Constraint Logic Programs. Lecture

Notes in Computer Science, 2008, , 284-300.

Derivation of Efficient Logic Programs by Specialization and Reduction of Nondeterminism. , 2008, , o
130-177.

Transformational Verification of Parameterized Protocols Using Array Formulas. Lecture Notes in
Computer Science, 2006, , 23-43.

Proving Properties of Constraint Logic Programs by Eliminating Existential Variables. Lecture Notes in 13 5
Computer Science, 2006, , 179-195. :

Derivation of Efficient Logic Programs by Specialization and Reduction of Nondeterminism.
Higher-Order and Symbolic Computation, 2005, 18, 121-210.

Transformations of logic programs with goals as arguments. Theory and Practice of Logic 15 4
Programming, 2004, 4, 495-537. ’

The List Introduction Strategy for the Derivation of Logic Programs. Formal Aspects of Computing,
2002, 13, 233-251.

Verification of Sets of Infinite State Processes Using Program Transformation. Lecture Notes in 13 10
Computer Science, 2002, , 111-128. :

Program Derivation = Rules + Strategies. Lecture Notes in Computer Science, 2002, , 273-309.

Automated Strategies for Specializing Constraint Logic Programs. Lecture Notes in Computer Science, 13 17
2001,, 125-146.)

Rules and Strategies for Contextual Specialization of Constraint Logic Programs. Electronic Notes in
Theoretical Computer Science, 2000, 30, 129-144.

Transformation Rules for Logic Programs with Goals as Arguments. Lecture Notes in Computer 1.3 1
Science, 2000, , 176-195. :

Synthesis and transformation of logic programs using unfold/fold proofs. The Journal of Logic
Programming, 1999, 41, 197-230.

Program specialization via algorithmic unfold/fold transformations. ACM Computing Surveys, 1998, 93.0 1
30, 6. :

Reducing nondeterminism while specializing logic programs. , 1997, , .

Enhancing partial deduction via unfold/fold rules. Lecture Notes in Computer Science, 1997, , 146-168. 1.3 3

Program Derivation via List Introduction. IFIP Advances in Information and Communication

Technology, 1997, , 296-323.

Developing correct and efficient logic programs by transformation. Knowledge Engineering Review, 06 5
1996, 11, 347-360. ’

56

58

60

62

64

66

68

70

72

MAURIZIO PROIETTI

ARTICLE IF CITATIONS

Rules and strategies for transforming functional and logic programs. ACM Computing Surveys, 1996,

28,360-414.

A comparative revisitation of some program transformation techniques. Lecture Notes in Computer 13 15
Science, 1996, , 355-385. :

A theory of logic program specialization and generalization for dealing with input data properties.
Lecture Notes in Computer Science, 1996, , 386-408.

Future directions in program transformation. ACM Computing Surveys, 1996, 28, 171. 23.0 5

Unfolding-definition-folding, in this order, for avoiding unnecessary variables in logic programs.
Theoretical Computer Science, 1995, 142, 89-124.

Transformation of logic programs: Foundations and techniques. The Journal of Logic Programming, 17 143
1994, 19-20, 261-320.)

Synthesis of Programs from Unfold/Fold Proofs. Workshops in Computing, 1994, , 141-158.

The loop absorption and the Feneralization strategies for the development of logic programs and 17 29
partial deduction. The Journal of Logic Programming, 1993, 16, 123-161. :

Semantics preserving transformation rules for Prolog. ACM SIGPLAN Notices, 1991, 26, 274-284.

Semantics preserving transformation rules for Prolog. , 1991, , . 15

Unfolding &€” definition &€” folding, in this order, for avoiding unnecessary variables in logic programs.
Lecture Notes in Computer Science, 1991, , 347-358.

Verification of Programs by Combining Iterated Specialization with Interpolation. Electronic

Proceedings in Theoretical Computer Science, EPTCS, 0, 169, 3-18. 0.8 2

Verification of Imperative Programs by Constraint Logic Program Transformation. Electronic
Proceedings in Theoretical Computer Science, EPTCS, 0, 129, 186-210.

Removing Unnecessary Variables from Horn Clause Verification Conditions. Electronic Proceedings in 0.8 o
Theoretical Computer Science, EPTCS, 0, 219, 49-55. :

Bounded Symbolic Execution for Runtime Error Detection of Erlang Programs. Electronic
Proceedings in Theoretical Computer Science, EPTCS, 0, 278, 19-26.

Proving Properties of Sorting Programs: A Case Study in Horn Clause Verification. Electronic 0.8 9
Proceedings in Theoretical Computer Science, EPTCS, 0, 296, 48-75. :

Lemma Generation for Horn Clause Satisfiability: A Preliminary Study. Electronic Proceedings in

Theoretical Computer Science, EPTCS, 0, 299, 4-18.

Transformational Verification of Quicksort. Electronic Proceedings in Theoretical Computer Science, 0.8 o
EPTCS, 0, 320, 95-109. ’

MAURIZIO PROIETTI

ARTICLE IF CITATIONS

Satisfiability of constrained Horn clauses on algebraic data types: A transformation-based approach.

Journal of Logic and Computation, O, , .

Verifying Catamorphism-Based Contracts using Constrained Horn Clauses. Theory and Practice of

74 Logic Programming, O, , 1-18.

15 6

