
Andreas G Ladurner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9017173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The macro domain is an ADP-ribose binding module. EMBO Journal, 2005, 24, 1911-1920.	3.5	439
2	A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Structural and Molecular Biology, 2009, 16, 923-929.	3.6	382
3	A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nature Structural and Molecular Biology, 2013, 20, 508-514.	3.6	280
4	Splicing regulates NAD metabolite binding to histone macroH2A. Nature Structural and Molecular Biology, 2005, 12, 624-625.	3.6	263
5	Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO Journal, 2013, 32, 1225-1237.	3.5	263
6	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	2.2	150
7	The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends in Biochemical Sciences, 2016, 41, 700-711.	3.7	143
8	Life span extension by targeting a link between metabolism and histone acetylation in <i>Drosophila</i> . EMBO Reports, 2016, 17, 455-469.	2.0	116
9	The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage. Molecular Biology of the Cell, 2016, 27, 3791-3799.	0.9	104
10	The Chromatin-Remodeling Factor FACT Contributes to Centromeric Heterochromatin Independently of RNAi. Current Biology, 2007, 17, 1219-1224.	1.8	79
11	A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene. Molecular Cell, 2017, 68, 860-871.e7.	4.5	70
12	MacroH2A histone variants limit chromatin plasticity through two distinct mechanisms. EMBO Reports, 2018, 19, .	2.0	60
13	MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD+ consumption. Nature Structural and Molecular Biology, 2017, 24, 902-910.	3.6	54
14	The Histone Variant MacroH2A1.2 Is Necessary for the Activation of Muscle Enhancers and Recruitment of the Transcription Factor Pbx1. Cell Reports, 2016, 14, 1156-1168.	2.9	49
15	Designing Cell-Type-Specific Genome-wide Experiments. Molecular Cell, 2015, 58, 621-631.	4.5	45
16	Synthesis and Macrodomain Binding of Monoâ€ADPâ€Ribosylated Peptides. Angewandte Chemie - International Edition, 2016, 55, 10634-10638.	7.2	45
17	The taming of PARP1 and its impact on NAD+ metabolism. Molecular Metabolism, 2020, 38, 100950.	3.0	37

Andreas G Ladurner

#	Article	IF	CITATIONS
19	The Chaperone FACT and Histone H2B Ubiquitination Maintain S.Âpombe Genome Architecture through Genic and Subtelomeric Functions. Molecular Cell, 2020, 77, 501-513.e7.	4.5	32
20	Crosstalk between Drp1 phosphorylation sites during mitochondrial remodeling and their impact on metabolic adaptation. Cell Reports, 2021, 36, 109565.	2.9	32
21	sNASP and ASF1A function through both competitive and compatible modes of histone binding. Nucleic Acids Research, 2017, 45, 643-656.	6.5	29
22	The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats. Nucleic Acids Research, 2016, 44, 3105-3117.	6.5	28
23	Exploiting the Circadian Clock for Improved Cancer Therapy: Perspective From a Cell Biologist. Frontiers in Genetics, 2019, 10, 1210.	1.1	17
24	The histone chaperone FACT facilitates heterochromatin spreading by regulating histone turnover and H3K9 methylation states. Cell Reports, 2021, 37, 109944.	2.9	16
25	ATM, MacroH2A.1, and SASP: The Checks and Balances of Cellular Senescence. Molecular Cell, 2015, 59, 713-715.	4.5	15
26	Evolution of a histone variant involved in compartmental regulation of NAD metabolism. Nature Structural and Molecular Biology, 2021, 28, 1009-1019.	3.6	7
27	Tickling PARPs into serine action. Nature Structural and Molecular Biology, 2020, 27, 310-312.	3.6	5
28	CENPs and Sweet Nucleosomes Face the FACT. Trends in Biochemical Sciences, 2016, 41, 736-738.	3.7	3
29	Remodelers tap into nucleosome plasticity. Nature Structural and Molecular Biology, 2017, 24, 341-343.	3.6	3
30	Restraining and unleashing chromatin remodelers – structural information guides chromatin plasticity. Current Opinion in Structural Biology, 2020, 65, 130-138.	2.6	3
31	Bromodomain AAA+ ATPases get into shape. Nucleus, 2020, 11, 32-34.	0.6	3
32	PARP1 and CBP lose their footing in cancer. Nature Structural and Molecular Biology, 2014, 21, 947-948.	3.6	1
33	ACF Takes the Driver's Seat. Molecular Cell, 2014, 55, 345-346.	4.5	1
34	Nick Your DNA, Mark Your Chromatin. Molecular Cell, 2016, 64, 7-9.	4.5	0
35	A triskelion of nucleic acids drives protein aggregation in A-T. Molecular Cell, 2021, 81, 1367-1369.	4.5	Ο