
Sascha Al Dahouk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9017098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A systematic review and meta-analysis of the aetiological agents of non-malarial febrile illnesses in Africa. PLoS Neglected Tropical Diseases, 2022, 16, e0010144.	1.3	8
2	Invasive listeriosis outbreaks and salmon products: a genomic, epidemiological study. Emerging Microbes and Infections, 2022, 11, 1308-1315.	3.0	15
3	The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms, 2022, 10, 813.	1.6	12
4	Nationwide outbreak of invasive listeriosis associated with consumption of meat products in health care facilities, Germany, 2014–2019. Clinical Microbiology and Infection, 2021, 27, 1035.e1-1035.e5.	2.8	25
5	Translatability of WGS typing results can simplify data exchange for surveillance and control of Listeria monocytogenes. Microbial Genomics, 2021, 7, .	1.0	12
6	Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms. Microorganisms, 2021, 9, 651.	1.6	21
7	Direct identification and molecular characterization of zoonotic hazards in raw milk by metagenomics using Brucella as a model pathogen. Microbial Genomics, 2021, 7, .	1.0	9
8	Comparative Genome-Wide Transcriptome Analysis of Brucella suis and Brucella microti Under Acid Stress at pH 4.5: Cold Shock Protein CspA and Dps Are Associated With Acid Resistance of B. microti. Frontiers in Microbiology, 2021, 12, 794535.	1.5	10
9	Backtracking and forward checking of human listeriosis clusters identified a multiclonal outbreak linked to <i>Listeria monocytogenes</i> in meat products of a single producer. Emerging Microbes and Infections, 2020, 9, 1600-1608.	3.0	27
10	A Proof of Principle for the Detection of Viable Brucella spp. in Raw Milk by qPCR Targeting Bacteriophages. Microorganisms, 2020, 8, 1326.	1.6	3
11	MALDI-TOF MS and genomic analysis can make the difference in the clarification of canine brucellosis outbreaks. Scientific Reports, 2020, 10, 19246.	1.6	9
12	Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Scientific Reports, 2020, 10, 9421.	1.6	7
13	Large Nationwide Outbreak of Invasive Listeriosis Associated with Blood Sausage, Germany, 2018–2019. Emerging Infectious Diseases, 2020, 26, 1456-1464.	2.0	40
14	Contamination Pathways can Be Traced along the Poultry Processing Chain by Whole Genome Sequencing of Listeria innocua. Microorganisms, 2020, 8, 414.	1.6	5
15	Q fever: Evidence of a massive yet undetected crossâ€border outbreak, with ongoing risk of extra mortality, in a Dutch–German border region. Transboundary and Emerging Diseases, 2020, 67, 1660-1670.	1.3	6
16	Evaluation of a Newly Developed Vacuum Dried Microtiter Plate for Rapid Biocide Susceptibility Testing of Clinical Enterococcus faecium Isolates. Microorganisms, 2020, 8, 551.	1.6	4
17	Benzalkonium Chloride Induces a VBNC State in Listeria monocytogenes. Microorganisms, 2020, 8, 184.	1.6	28
18	Lethality of <i>Brucella microti</i> in a murine model of infection depends on the <i>wbkE</i> gene involved in O-polysaccharide synthesis. Virulence, 2019, 10, 868-878.	1.8	10

Sascha Al Dahouk

#	Article	IF	CITATIONS
19	Carbapenem-resistant Klebsiella pneumoniae with low chlorhexidine susceptibility. Lancet Infectious Diseases, The, 2019, 19, 932-933.	4.6	15
20	Brucella-positive raw milk cheese sold on the inner European market: A public health threat due to illegal import?. Food Control, 2019, 100, 130-137.	2.8	31
21	Microbiological Safety of Non-Food Products: What Can We Learn from the RAPEX Database?. International Journal of Environmental Research and Public Health, 2019, 16, 1599.	1.2	8
22	Foodborne diseases do not respect borders: Zoonotic pathogens and antimicrobial resistant bacteria in food products of animal origin illegally imported into the European Union. Veterinary Journal, 2019, 244, 75-82.	0.6	34
23	Analysis of RASFF notifications on food products contaminated with Listeria monocytogenes reveals options for improvement in the rapid alert system for food and feed. Food Control, 2019, 96, 479-487.	2.8	25
24	Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes – The way towards global harmonisation and data exchange. Trends in Food Science and Technology, 2018, 73, 67-75.	7.8	93
25	Antibiotic susceptibility of 259 Listeria monocytogenes strains isolated from food, food-processing plants and human samples in Germany. Journal of Infection and Public Health, 2018, 11, 572-577.	1.9	76
26	Revisiting Francisella tularensis subsp. holarctica, Causative Agent of Tularemia in Germany With Bioinformatics: New Insights in Genome Structure, DNA Methylation and Comparative Phylogenetic Analysis. Frontiers in Microbiology, 2018, 9, 344.	1.5	27
27	Overview of validated alternative methods for the detection of foodborne bacterial pathogens. Trends in Food Science and Technology, 2017, 62, 113-118.	7.8	87
28	Are brucellosis, Q fever and melioidosis potential causes of febrile illness in Madagascar?. Acta Tropica, 2017, 172, 255-262.	0.9	9
29	Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Scientific Reports, 2017, 7, 44420.	1.6	96
30	Differential detection of pathogenic Yersinia spp. by fluorescence in situ hybridization. Food Microbiology, 2017, 62, 39-45.	2.1	17
31	Molecular Tracing to Find Source of Protracted Invasive Listeriosis Outbreak, Southern Germany, 2012–2016. Emerging Infectious Diseases, 2017, 23, 1680-1683.	2.0	47
32	RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity. Frontiers in Cellular and Infection Microbiology, 2017, 7, 186.	1.8	15
33	Genetic Diversity of Brucella Reference and Non-reference Phages and Its Impact on Brucella-Typing. Frontiers in Microbiology, 2017, 8, 408.	1.5	7
34	The Glutaminase-Dependent System Confers Extreme Acid Resistance to New Species and Atypical Strains of Brucella. Frontiers in Microbiology, 2017, 8, 2236.	1.5	17
35	In Reply. Deutsches Ärzteblatt International, 2017, 114, 177.	0.6	Ο
36	The Risk of Bacterial Infection After Tattooing. Deutsches Ärzteblatt International, 2016, 113, 665-671.	0.6	41

#	Article	IF	CITATIONS
37	Analysis of the First Temperate Broad Host Range Brucellaphage (BiPBO1) Isolated from B. inopinata. Frontiers in Microbiology, 2016, 7, 24.	1.5	29
38	Detection of foodborne bacterial zoonoses by fluorescence in situ hybridization. Food Control, 2016, 69, 297-305.	2.8	13
39	Rapid screening for antibiotic resistance elements on the RNA transcript, protein and enzymatic activity level. Annals of Clinical Microbiology and Antimicrobials, 2016, 15, 55.	1.7	6
40	Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy. Faraday Discussions, 2016, 187, 353-375.	1.6	29
41	A medical-toxicological view of tattooing. Lancet, The, 2016, 387, 395-402.	6.3	177
42	Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes). International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2090-2098.	0.8	155
43	Experimental Challenge of Atlantic Cod (Gadus morhua) with a Brucella pinnipedialis Strain from Hooded Seal (Cystophora cristata). PLoS ONE, 2016, 11, e0159272.	1.1	28
44	Sampling and Homogenization Strategies Significantly Influence the Detection of Foodborne Pathogens in Meat. BioMed Research International, 2015, 2015, 1-8.	0.9	17
45	Glutamate Decarboxylase-Dependent Acid Resistance in Brucella spp.: Distribution and Contribution to Fitness under Extremely Acidic Conditions. Applied and Environmental Microbiology, 2015, 81, 578-586.	1.4	43
46	FISHing for bacteria in food – A promising tool for the reliable detection of pathogenic bacteria?. Food Microbiology, 2015, 46, 395-407.	2.1	84
47	F1 and Tbilisi Are Closely Related Brucellaphages Exhibiting Some Distinct Nucleotide Variations Which Determine the Host Specificity. Genome Announcements, 2014, 2, .	0.8	6
48	Brucella papionis sp. nov., isolated from baboons (Papio spp.). International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 4120-4128.	0.8	171
49	Quantitative analysis of the Brucella suis proteome reveals metabolic adaptation to long-term nutrient starvation. BMC Microbiology, 2013, 13, 199.	1.3	27
50	A "One Health―surveillance and control of brucellosis in developing countries: Moving away from improvisation. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 241-248.	0.7	147
51	Interlaboratory Comparison of Intact-Cell Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Results for Identification and Differentiation of Brucella spp. Journal of Clinical Microbiology, 2013, 51, 3123-3126.	1.8	48
52	Intraspecies Biodiversity of the Genetically Homologous Species Brucella microti. Applied and Environmental Microbiology, 2012, 78, 1534-1543.	1.4	48
53	Q Fever: Single-Point Source Outbreak With High Attack Rates and Massive Numbers of Undetected Infections Across an Entire Region. Clinical Infectious Diseases, 2012, 55, 1591-1599.	2.9	56
54	Cross-border molecular tracing of brucellosis in Europe. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 181-185.	0.7	21

#	Article	IF	CITATIONS
55	A potential novel Brucella species isolated from mandibular lymph nodes of red foxes in Austria. Veterinary Microbiology, 2012, 155, 93-99.	0.8	23
56	Implications of laboratory diagnosis on brucellosis therapy. Expert Review of Anti-Infective Therapy, 2011, 9, 833-845.	2.0	136
57	Development of a diagnostic multiplex polymerase chain reaction microarray assay to detect and differentiate Brucella spp Diagnostic Microbiology and Infectious Disease, 2011, 71, 341-353.	0.8	11
58	Detection of Yersinia pestis using real-time PCR in patients with suspected bubonicÂplague. Molecular and Cellular Probes, 2011, 25, 8-12.	0.9	46
59	Differential phenotyping of Brucella species using a newly developed semi-automated metabolic system. BMC Microbiology, 2010, 10, 269.	1.3	45
60	Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR. BMC Infectious Diseases, 2010, 10, 100.	1.3	35
61	Brucella inopinata sp. nov., isolated from a breast implant infection. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 801-808.	0.8	276
62	Brucellosis – Regionally Emerging Zoonotic Disease?. Croatian Medical Journal, 2010, 51, 289-295.	0.2	156
63	Molecular Epidemiology of <i>Brucella</i> Genotypes in Patients at a Major Hospital in Central Peru. Journal of Clinical Microbiology, 2009, 47, 3147-3155.	1.8	21
64	MLVA-16 typing of 295 marine mammal Brucella isolates from different animal and geographic origins identifies 7 major groups within Brucella ceti and Brucella pinnipedialis. BMC Microbiology, 2009, 9, 145.	1.3	119
65	Proteomic analysis of <i>Brucella suis</i> under oxygen deficiency reveals flexibility in adaptive expression of various pathways. Proteomics, 2009, 9, 3011-3021.	1.3	39
66	Identification and antimicrobial susceptibilities of Ochrobactrum spp International Journal of Medical Microbiology, 2009, 299, 209-220.	1.5	42
67	Isolation of <i>Brucella microti</i> from Mandibular Lymph Nodes of Red Foxes, <i>Vulpes vulpes</i> , in Lower Austria. Vector-Borne and Zoonotic Diseases, 2009, 9, 153-156.	0.6	103
68	Brucellosis of the lung: case report and review of the literature. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2008, 452, 97-101.	1.4	17
69	Quantitative analysis of the intramacrophagic <i>Brucella suis</i> proteome reveals metabolic adaptation to late stage of cellular infection. Proteomics, 2008, 8, 3862-3870.	1.3	50
70	Brucella suis identification and biovar typing by real-time PCR. Veterinary Microbiology, 2008, 131, 376-385.	0.8	48
71	Genetic diversity and phylogenetic relationships of bacteria belonging to the Ochrobactrum–Brucella group by recA and 16S rRNA gene-based comparative sequence analysis. Systematic and Applied Microbiology, 2008, 31, 1-16.	1.2	78
72	Brucella microti sp. nov., isolated from the common vole Microtus arvalis. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 375-382.	0.8	300

#	Article	IF	CITATIONS
73	Preliminary validation of real-time PCR assays for the identification of Yersinia pestis. Clinical Chemistry and Laboratory Medicine, 2008, 46, 1239-44.	1.4	18
74	Specific detection and differentiation of Ochrobactrum anthropi, Ochrobactrum intermedium and Brucella spp. by a multi-primer PCR that targets the recA gene. Journal of Medical Microbiology, 2008, 57, 64-71.	0.7	51
75	Isolation of <i>Brucella microti </i> from Soil. Emerging Infectious Diseases, 2008, 14, 1316-1317.	2.0	107
76	Real-time PCR using hybridization probes for the rapid and specific identification of Francisella tularensis subspecies tularensis. Molecular and Cellular Probes, 2007, 21, 12-16.	0.9	56
77	Evaluation of Brucella MLVA typing for human brucellosis. Journal of Microbiological Methods, 2007, 69, 137-145.	0.7	246
78	Changing Epidemiology of Human Brucellosis, Germany, 1962–2005. Emerging Infectious Diseases, 2007, 13, 1895-1900.	2.0	99
79	Optimized application of surface-enhanced laser desorption/ionization time-of-flight MS to differentiateFrancisella tularensisat the level of subspecies and individual strains. FEMS Immunology and Medical Microbiology, 2007, 49, 364-373.	2.7	32
80	Evaluation of genus-specific and species-specific real-time PCR assays for the identification of Brucella spp Clinical Chemistry and Laboratory Medicine, 2007, 45, 1464-70.	1.4	48
81	Detection of the reemerging agent Burkholderia mallei in a recent outbreak of glanders in the United Arab Emirates by a newly developed fliP-based polymerase chain reaction assay. Diagnostic Microbiology and Infectious Disease, 2006, 54, 241-247.	0.8	52
82	Genotyping ofOchrobactrum anthropibyrecA-based comparative sequence, PCR-RFLP, and 16S rRNA gene analysis. FEMS Microbiology Letters, 2006, 257, 7-16.	0.7	55
83	Comparison of Four Commercially Available Assays for the Detection of IgM Phase II Antibodies to Coxiella burnetii in the Diagnosis of Acute Q Fever. Annals of the New York Academy of Sciences, 2006, 1078, 561-562.	1.8	8
84	Growth characteristics of Bacillus anthracis compared to other Bacillus spp. on the selective nutrient media Anthrax Blood Agar® and Cereus Ident Agar®. Systematic and Applied Microbiology, 2006, 29, 24-28.	1.2	17
85	Detection of Chromobacterium violaceum by multiplex PCR targeting the prgl, spaO, invG, and sipB genes. Systematic and Applied Microbiology, 2006, 29, 45-48.	1.2	10
86	Immunoproteomic characterization of Brucella abortus 1119-3 preparations used for the serodiagnosis of Brucella infections. Journal of Immunological Methods, 2006, 309, 34-47.	0.6	57
87	Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiology, 2006, 6, 9.	1.3	339
88	DRB1*0401-restricted human T cell clone specific for the major proinsulin73-90 epitope expresses a down-regulatory T helper 2 phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11683-11688.	3.3	40
89	Development of a 5â€2-Nuclease Real-Time PCR Assay Targeting fliP for the Rapid Identification of Burkholderia mallei in Clinical Samples. Clinical Chemistry, 2006, 52, 307-310.	1.5	39
90	Genotyping ofChromobacterium violaceumisolates byrecAPCR-RFLP analysis. FEMS Microbiology Letters, 2005, 244, 347-352.	0.7	10

#	Article	IF	CITATIONS
91	Failure of a Short-Term Antibiotic Therapy for Human Brucellosis Using Ciprofloxacin. Chemotherapy, 2005, 51, 352-356.	0.8	31
92	Rapid presumptive identification of Burkholderia pseudomallei with real-time PCR assays using fluorescent hybridization probes. Molecular and Cellular Probes, 2005, 19, 9-20.	0.9	51
93	Antimicrobial susceptibilities of Austrian Francisella tularensis holarctica biovar II strains. International Journal of Antimicrobial Agents, 2005, 26, 279-284.	1.1	58
94	Identification of Brucella Species and Biotypes using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Critical Reviews in Microbiology, 2005, 31, 191-196.	2.7	55
95	Development of 5′ Nuclease Real-Time PCR Assays for the Rapid Identification of the Burkholderia Mallei//Burkholderia Pseudomallei Complex. Diagnostic Molecular Pathology, 2004, 13, 247-253.	2.1	39
96	The detection of Brucella spp. using PCR-ELISA and real-time PCR assays. Clinical Laboratory, 2004, 50, 387-94.	0.2	24
97	Rapid detection ofYersinia pestiswith multiplex real-time PCR assays using fluorescent hybridisation probes. FEMS Immunology and Medical Microbiology, 2003, 38, 117-126.	2.7	74
98	Laboratory-based diagnosis of brucellosisa review of the literature. Part I: Techniques for direct detection and identification of Brucella spp. Clinical Laboratory, 2003, 49, 487-505.	0.2	89
99	Laboratory-based diagnosis of brucellosisa review of the literature. Part II: serological tests for brucellosis. Clinical Laboratory, 2003, 49, 577-89.	0.2	128