
Chad A Dickey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. Journal of Clinical Investigation, 2007, 117, 648-658.	8.2	545
2	Hsp90-Tau Complex Reveals Molecular Basis for Specificity in Chaperone Action. Cell, 2014, 156, 963-974.	28.9	269
3	C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nature Neuroscience, 2016, 19, 668-677.	14.8	268
4	Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy, 2012, 8, 609-622.	9.1	260
5	Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. Journal of Clinical Investigation, 2013, 123, 4158-4169.	8.2	246
6	Deletion of the Ubiquitin Ligase CHIP Leads to the Accumulation, But Not the Aggregation, of Both Endogenous Phospho- and Caspase-3-Cleaved Tau Species. Journal of Neuroscience, 2006, 26, 6985-6996.	3.6	234
7	Selectively Reduced Expression of Synaptic Plasticity-Related Genes in Amyloid Precursor Protein + Presenilin-1 Transgenic Mice. Journal of Neuroscience, 2003, 23, 5219-5226.	3.6	223
8	Chemical Manipulation of Hsp70 ATPase Activity Regulates Tau Stability. Journal of Neuroscience, 2009, 29, 12079-12088.	3.6	210
9	Tau Accumulation Activates the Unfolded Protein Response by Impairing Endoplasmic Reticulum-Associated Degradation. Journal of Neuroscience, 2013, 33, 9498-9507.	3.6	204
10	Akt and CHIP coregulate tau degradation through coordinated interactions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3622-3627.	7.1	203
11	The Hsp90 Cochaperone, FKBP51, Increases Tau Stability and Polymerizes Microtubules. Journal of Neuroscience, 2010, 30, 591-599.	3.6	184
12	Allosteric Drugs: The Interaction of Antitumor Compound MKT-077 with Human Hsp70 Chaperones. Journal of Molecular Biology, 2011, 411, 614-632.	4.2	171
13	Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Molecular Neurodegeneration, 2010, 5, 45.	10.8	160
14	HSP induction mediates selective clearance of tau phosphorylated at prolineâ€directed Ser/Thr sites but not KXGS (MARK) sites. FASEB Journal, 2006, 20, 753-755.	0.5	157
15	DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerativeâ€associated proteins. EMBO Journal, 2016, 35, 1537-1549.	7.8	154
16	Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nature Structural and Molecular Biology, 2018, 25, 384-393.	8.2	119
17	Synthesis and Initial Evaluation of YM-08, a Blood-Brain Barrier Permeable Derivative of the Heat Shock Protein 70 (Hsp70) Inhibitor MKT-077, Which Reduces Tau Levels. ACS Chemical Neuroscience, 2013, 4, 930-939.	3.5	109
18	Phosphorylation Dynamics Regulate Hsp27-Mediated Rescue of Neuronal Plasticity Deficits in Tau Transgenic Mice. Journal of Neuroscience, 2010, 30, 15374-15382.	3.6	105

#	Article	IF	CITATIONS
19	A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP51. PLoS ONE, 2011, 6, e24840.	2.5	105
20	Imbalance of Hsp70 family variants fosters tau accumulation. FASEB Journal, 2013, 27, 1450-1459.	0.5	100
21	Allosteric Heat Shock Protein 70 Inhibitors Rapidly Rescue Synaptic Plasticity Deficits by Reducing Aberrant Tau. Biological Psychiatry, 2013, 74, 367-374.	1.3	93
22	Number of A <i>β</i> Inoculations in APP+PS1 Transgenic Mice Influences Antibody Titers, Microglial Activation, and Congophilic Plaque Levels. DNA and Cell Biology, 2001, 20, 731-736.	1.9	90
23	Hsp90 activator Aha1 drives production of pathological tau aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9707-9712.	7.1	89
24	Targeting Hsp90 and its co-chaperones to treat Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2014, 18, 1219-1232.	3.4	86
25	Cysteine Reactivity Distinguishes Redox Sensing by the Heat-Inducible and Constitutive Forms of Heat Shock Protein 70. Chemistry and Biology, 2012, 19, 1391-1399.	6.0	83
26	The emerging role of peptidylâ€prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer's disease. Journal of Neurochemistry, 2015, 133, 1-13.	3.9	81
27	Chaperones in Neurodegeneration. Journal of Neuroscience, 2015, 35, 13853-13859.	3.6	81
28	Amyloid suppresses induction of genes critical for memory consolidation in APP + PS1 transgenic mice. Journal of Neurochemistry, 2004, 88, 434-442.	3.9	80
29	Age-Associated Epigenetic Upregulation of the FKBP5 Gene Selectively Impairs Stress Resiliency. PLoS ONE, 2014, 9, e107241.	2.5	79
30	Development of a High Throughput Drug Screening Assay for the Detection of Changes in Tau Levels - Proof of Concept with HSP90 inhibitors. Current Alzheimer Research, 2005, 2, 231-238.	1.4	77
31	Hsc70 Rapidly Engages Tau after Microtubule Destabilization. Journal of Biological Chemistry, 2010, 285, 16798-16805.	3.4	75
32	Aging Analysis Reveals Slowed Tau Turnover and Enhanced Stress Response in a Mouse Model of Tauopathy. American Journal of Pathology, 2009, 174, 228-238.	3.8	73
33	Analysis of the Tau-Associated Proteome Reveals That Exchange of Hsp70 for Hsp90 Is Involved in Tau Degradation. ACS Chemical Biology, 2012, 7, 1677-1686.	3.4	72
34	Structure and pro-toxic mechanism of the human Hsp90/PPlase/Tau complex. Nature Communications, 2018, 9, 4532.	12.8	68
35	Glucose-regulated Protein 94 Triage of Mutant Myocilin through Endoplasmic Reticulum-associated Degradation Subverts a More Efficient Autophagic Clearance Mechanism. Journal of Biological Chemistry, 2012, 287, 40661-40669.	3.4	66
36	Dysregulation of Na+/K+ ATPase by amyloid in APP+PS1 transgenic mice. BMC Neuroscience, 2005, 6, 7.	1.9	59

#	Article	IF	CITATIONS
37	The Hsp90 Kinase Co-chaperone Cdc37 Regulates Tau Stability and Phosphorylation Dynamics. Journal of Biological Chemistry, 2011, 286, 16976-16983.	3.4	59
38	Stabilizing the Hsp70-Tau Complex Promotes Turnover in Models of Tauopathy. Cell Chemical Biology, 2016, 23, 992-1001.	5.2	58
39	DnaJA1 Antagonizes Constitutive Hsp70-Mediated Stabilization of Tau. Journal of Molecular Biology, 2012, 421, 653-661.	4.2	56
40	Cellular factors modulating the mechanism of tau protein aggregation. Cellular and Molecular Life Sciences, 2015, 72, 1863-1879.	5.4	55
41	Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies. Future Medicinal Chemistry, 2011, 3, 1523-1537.	2.3	54
42	Development of Glucose Regulated Protein 94-Selective Inhibitors Based on the BnIm and Radamide Scaffold. Journal of Medicinal Chemistry, 2016, 59, 3471-3488.	6.4	54
43	MicroRNA-511 Binds to FKBP5 mRNA, Which Encodes a Chaperone Protein, and Regulates Neuronal Differentiation. Journal of Biological Chemistry, 2016, 291, 17897-17906.	3.4	46
44	Duration and Specificity of Humoral Immune Responses in Mice Vaccinated with the Alzheimer's Disease-Associated β-Amyloid 1-42 Peptide. DNA and Cell Biology, 2001, 20, 723-729.	1.9	43
45	Human cyclophilin 40 unravels neurotoxic amyloids. PLoS Biology, 2017, 15, e2001336.	5.6	43
46	Targeting the ER-autophagy system in the trabecular meshwork to treat glaucoma. Experimental Eye Research, 2016, 144, 38-45.	2.6	42
47	Rhodacyanine Derivative Selectively Targets Cancer Cells and Overcomes Tamoxifen Resistance. PLoS ONE, 2012, 7, e35566.	2.5	40
48	Hsp70 ATPase Modulators as Therapeutics for Alzheimer's and other Neurodegenerative Diseases. Molecular and Cellular Pharmacology, 2010, 2, 43-46.	1.7	40
49	Isoform-selective Genetic Inhibition of Constitutive Cytosolic Hsp70 Activity Promotes Client Tau Degradation Using an Altered Co-chaperone Complement. Journal of Biological Chemistry, 2015, 290, 13115-13127.	3.4	39
50	Exploiting the interaction between Grp94 and aggregated myocilin to treat glaucoma. Human Molecular Genetics, 2014, 23, 6470-6480.	2.9	38
51	Transformation of the Non-Selective Aminocyclohexanol-Based Hsp90 Inhibitor into a Grp94-Seletive Scaffold. ACS Chemical Biology, 2017, 12, 244-253.	3.4	38
52	Pharmacologic reductions of total tau levels; implications for the role of microtubule dynamics in regulating tau expression. Molecular Neurodegeneration, 2006, 1, 6.	10.8	35
53	Identification of dihydropyridines that reduce cellular tau levels. Chemical Communications, 2011, 47, 529-531.	4.1	35
54	The Disease-Associated Chaperone FKBP51 Impairs Cognitive Function by Accelerating AMPA Receptor Recycling. ENeuro, 2019, 6, ENEURO.0242-18.2019.	1.9	35

#	Article	IF	CITATIONS
55	Bending Tau into Shape: The Emerging Role of Peptidyl-Prolyl Isomerases in Tauopathies. Molecular Neurobiology, 2011, 44, 65-70.	4.0	30
56	Targeting the FKBP51/GR/Hsp90 Complex to Identify Functionally Relevant Treatments for Depression and PTSD. ACS Chemical Biology, 2018, 13, 2288-2299.	3.4	29
57	Spermidine/spermine-N1-acetyltransferase ablation impacts tauopathy-induced polyamine stress response. Alzheimer's Research and Therapy, 2019, 11, 58.	6.2	29
58	The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics. Human Molecular Genetics, 2015, 24, 3971-3981.	2.9	28
59	Isoform-selective Hsp90 inhibition rescues model of hereditary open-angle glaucoma. Scientific Reports, 2017, 7, 17951.	3.3	28
60	Early Life Stress and High FKBP5 Interact to Increase Anxiety-Like Symptoms through Altered AKT Signaling in the Dorsal Hippocampus. International Journal of Molecular Sciences, 2019, 20, 2738.	4.1	28
61	Potential synergy between tau aggregation inhibitors and tau chaperone modulators. Alzheimer's Research and Therapy, 2013, 5, 41.	6.2	25
62	Enhanced tau pathology via RanBP9 and Hsp90/Hsc70 chaperone complexes. Human Molecular Genetics, 2017, 26, 3973-3988.	2.9	24
63	Current strategies for the treatment of Alzheimer's disease and other tauopathies. Expert Opinion on Therapeutic Targets, 2006, 10, 665-676.	3.4	22
64	The role of FKBP5 in mood disorders: action of FKBP5 on steroid hormone receptors leads to questions about its evolutionary importance. CNS and Neurological Disorders - Drug Targets, 2013, 12, 1157-62.	1.4	22
65	Reconstructing the Hsp90/Tau Machine. Current Enzyme Inhibition, 2013, 9, 41-45.	0.4	20
66	Aberrant AZIN2 and polyamine metabolism precipitates tau neuropathology. Journal of Clinical Investigation, 2021, 131, .	8.2	20
67	FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism. Brain, Behavior, & Immunity - Health, 2020, 9, 100143.	2.5	19
68	Hippocampal Neurogenesis Is Enhanced in Adult Tau Deficient Mice. Cells, 2020, 9, 210.	4.1	19
69	Small heat shock protein 22 kDa can modulate the aggregation and liquid–liquid phase separation behavior of tau. Protein Science, 2021, 30, 1350-1359.	7.6	19
70	Neurodegeneration and the Heat Shock Protein 70 Machinery: Implications for Therapeutic Development. Current Topics in Medicinal Chemistry, 2016, 16, 2741-2752.	2.1	19
71	Synthesis, Stereochemical Analysis, and Derivatization of Myricanol Provide New Probes That Promote Autophagic Tau Clearance. ACS Chemical Biology, 2015, 10, 1099-1109.	3.4	18
72	The Metamorphic Nature of the Tau Protein: Dynamic Flexibility Comes at a Cost. Frontiers in Neuroscience, 2016, 10, 3.	2.8	18

#	Article	IF	CITATIONS
73	Protein Cross-Linking Capillary Electrophoresis for Protein–Protein Interaction Analysis. Analytical Chemistry, 2016, 88, 8272-8278.	6.5	18
74	Induction of memory-associated immediate early genes by nerve growth factor in rat primary cortical neurons and differentiated mouse Neuro2A cells. Neuroscience Letters, 2004, 366, 10-14.	2.1	17
75	Trifunctional High-Throughput Screen Identifies Promising Scaffold To Inhibit Grp94 and Treat Myocilin-Associated Glaucoma. ACS Chemical Biology, 2018, 13, 933-941.	3.4	17
76	Inhibition of Both Hsp70 Activity and Tau Aggregation <i>in Vitro</i> Best Predicts Tau Lowering Activity of Small Molecules. ACS Chemical Biology, 2016, 11, 2041-2048.	3.4	14
77	Stable calcium-free myocilin olfactomedin domain variants reveal challenges in differentiating between benign and glaucoma-causing mutations. Journal of Biological Chemistry, 2019, 294, 12717-12728.	3.4	13
78	Repeated repeat problems: Combinatorial effect of C9orf72-derived dipeptide repeat proteins. International Journal of Biological Macromolecules, 2019, 127, 136-145.	7.5	13
79	Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone. Cell Chemical Biology, 2020, 27, 292-305.e6.	5.2	13
80	Hsp22 with an N-Terminal Domain Truncation Mediates a Reduction in Tau Protein Levels. International Journal of Molecular Sciences, 2020, 21, 5442.	4.1	10
81	FKBP52 overexpression accelerates hippocampal-dependent memory impairments in a tau transgenic mouse model. Npj Aging and Mechanisms of Disease, 2021, 7, 9.	4.5	10
82	The Earliest Tau Dysfunction in Alzheimer's Disease?. American Journal of Pathology, 2011, 179, 2148-2151.	3.8	8
83	Neuronal Life Span Versus Health Span: Principles of Natural Selection at Work in the Degenerating Brain. Journal of Molecular Neuroscience, 2011, 45, 467-72.	2.3	2
84	Commentary on "Cytoskeletal modulators and pleiotropic strategies for Alzheimer drug discovery.― The last stand: The dichotomy of chaperone function in Alzheimer's disease. , 2007, 3, 3-6.		1
85	S3-02-01: TARGETING CHAPERONES TO TREAT FTLD. , 2014, 10, P201-P201.		0