Wenli Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016732/publications.pdf Version: 2024-02-01

WENLL SONG

#	Article	IF	CITATIONS
1	Investigation on the water-washing of corn straw for de-ash, de-chlorination, and increase of heating value through response surface methodology. Biomass Conversion and Biorefinery, 2024, 14, 2129-2140.	4.6	0
2	Catalytic pyrolysis of corn straw for deoxygenation of bio-oil with different types of catalysts. Korean Journal of Chemical Engineering, 2022, 39, 1240-1247.	2.7	6
3	Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar. Journal of Hazardous Materials, 2021, 402, 123826.	12.4	35
4	Density Functional Theory Study on the Initial Reactions of D-Xylose and D-Xylulose Dehydration to Furfural. Carbohydrate Research, 2021, 511, 108463.	2.3	6
5	Staged Condensation of Coal Tar from the Pyrolysis of Coal in a Screw Pyrolyzer. Chemical Engineering and Technology, 2020, 43, 1442-1450.	1.5	2
6	Characterization of Solid Residues from Entrained Flow Gasification of Coal Bio-Oil Slurry. Energy & Fuels, 2020, 34, 5900-5906.	5.1	8
7	In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution. Korean Journal of Chemical Engineering, 2019, 36, 1235-1242.	2.7	20
8	Two-step etherification of phenolic-oil with methanol under catalysis of alumina-supported metal salts. New Journal of Chemistry, 2019, 43, 8250-8259.	2.8	1
9	Preparation of furans from catalytic conversion of corn stover in H2O–THF co-solvent system – The effects of acids combined with alkali metal cations. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 105-111.	5.3	9
10	Pyrolysis of heavy tar for improving the yield of light components through a microwave pyrolysis reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 2786-2794.	2.3	7
11	Efficient Conversion of Cellulose to 5â€Hydroxymethylfurfural in NaHSO 4 /ZrO 2 /H 2 Oâ€THF Biphasic System. ChemistrySelect, 2018, 3, 12243-12249.	1.5	7
12	Fuel gas production from dusty tar pyrolysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2745-2752.	2.3	2
13	Density Functional Theory Study of the Role of an Carbon–Oxygen Single Bond Group in the NO–Char Reaction. Energy & Fuels, 2018, 32, 7734-7744.	5.1	27
14	Conversion of furan derivatives for preparation of biofuels over Ni–Cu/C catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1176-1181.	2.3	21
15	Cyclic CO ₂ capture performance of carbide slag. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 577-582.	2.3	12
16	Pyrolysis of cellulose under catalysis of SAPO-34, ZSM-5, and Y zeolite via the Py-GC/MS method. International Journal of Green Energy, 2016, 13, 853-858.	3.8	12
17	Catalytic Upgrading of Phenolic Oil byÂEtherification with Methanol. Chemical Engineering and Technology, 2016, 39, 1797-1803.	1.5	4
18	Characterization of transverse mixing in a screw mixer by image analysis. Drying Technology, 2016, 34, 194-205.	3.1	2

Wenli Song

#	Article	IF	CITATIONS
19	Residence Time Distribution of Particles in a Screw Feeder: Experimental and Modelling Study. Canadian Journal of Chemical Engineering, 2015, 93, 1635-1642.	1.7	11
20	Wood-Tar Fractionation by Column Chromatography with an Adsorbent of Acidic Al ₂ O ₃ . International Journal of Green Energy, 2014, 11, 320-328.	3.8	3
21	Coal Pyrolysis in a Laboratoryâ€6cale Twoâ€6tage Reactor: Catalytic Upgrading of Pyrolytic Vapors. Chemical Engineering and Technology, 2014, 37, 2135-2142.	1.5	15
22	A Comparison of Monomeric Phenols Produced from Lignin by Fast Pyrolysis and Hydrothermal Conversions. International Journal of Chemical Reactor Engineering, 2013, 11, 135-145.	1.1	32
23	Thermogravimetric analysis on gasification reactivity of Hailar lignite. Journal of Thermal Analysis and Calorimetry, 2012, 109, 337-343.	3.6	16
24	Process Simulation Development of Coal Combustion in a Circulating Fluidized Bed Combustor Based on Aspen Plus. Energy & Fuels, 2011, 25, 1721-1730.	5.1	41
25	Process Simulation of Emission and Control for NO and N ₂ O during Coal Combustion in a Circulating Fluidized Bed Combustor Based on Aspen Plus. Energy & Fuels, 2011, 25, 3718-3730.	5.1	12
26	Component fractionation of wood-tar by column chromatography with the packing material of silica gel. Science Bulletin, 2011, 56, 1434-1441.	1.7	12
27	NO Reduction in Decoupling Combustion of Biomass and Biomassâ^'Coal Blend. Energy & Fuels, 2009, 23, 224-228.	5.1	30
28	Mass transfer and reaction performance of the downer and its hydrodynamic explanation. Canadian Journal of Chemical Engineering, 2008, 86, 436-447.	1.7	13
29	Influence of the Gas and Particle Residence Time on Fast Pyrolysis of Lignite. Journal of Energy Resources Technology, Transactions of the ASME, 2007, 129, 152-158.	2.3	4