Gianreto Manatschal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The synâ€rift tectonoâ€stratigraphic record of rifted margins (Part I): Insights from the Alpine Tethys. Basin Research, 2022, 34, 457-488.	2.7	9
2	The synâ€rift tectonoâ€stratigraphic record of rifted margins (Part II): A new model to break through the proximal/distal interpretation frontier. Basin Research, 2022, 34, 489-532.	2.7	11
3	Competition between 3D structural inheritance and kinematics during rifting: Insights from analogue models. Basin Research, 2022, 34, 824-854.	2.7	11
4	Ultramafic-hosted volcanogenic massive sulfide deposits: an overlooked sub-class of VMS deposit forming in complex tectonic environments. Earth-Science Reviews, 2022, 224, 103891.	9.1	19
5	Passive imaging of collisional orogens: a review of a decade of geophysical studies in the Pyrénées. Bulletin - Societie Geologique De France, 2022, 193, 1.	2.2	7
6	Structural and petrological characteristics of a Jurassic detachment fault from the Mont-Blanc massif (Col du Bonhomme area, France). Journal of Structural Geology, 2022, 159, 104593.	2.3	6
7	The Sr isotope geochemistry of oceanic ultramafic-hosted mineralizations. Ore Geology Reviews, 2022, 144, 104824.	2.7	4
8	Moho carbonation at an ocean-continent transition. Geology, 2022, 50, 278-283.	4.4	1
9	A 3D Snapshot of Crustal Breakup Deduced From Seismic Analysis of the Tip of the NW South China Sea. Tectonics, 2022, 41, .	2.8	4
10	Syn-rift magmatic characteristics and evolution at a sediment-rich margin: Insights from high-resolution seismic data from the South China Sea. Gondwana Research, 2021, 91, 81-96.	6.0	30
11	Discussion to "Oxygen isotope in ophicalcites: an ever-lasting controversy?― International Journal of Earth Sciences, 2021, 110, 1117-1121.	1.8	2
12	Rift inheritance controls the switch from thin- to thick-skinned thrusting and basal décollement re-localization at the subduction-to-collision transition. Bulletin of the Geological Society of America, 2021, 133, 2157-2170.	3.3	30
13	Nature, Origin, and Evolution of the Pyrenean antabrian Junction. Tectonics, 2021, 40, e2020TC006134.	2.8	13
14	The tectono-magmatic and subsidence evolution during lithospheric breakup in a salt-rich rifted margin: Insights from a 3D seismic survey from southern Gabon. Marine and Petroleum Geology, 2021, 128, 105005.	3.3	16
15	Ocean-continent transition architecture and breakup mechanism at the mid-northern South China Sea. Earth-Science Reviews, 2021, 217, 103620.	9.1	27
16	Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models. Solid Earth, 2021, 12, 1473-1495.	2.8	22
17	The challenge in restoring magma-rich rifted margins: The example of the Mozambique-Antarctica conjugate margins. Condwana Research, 2021, 95, 29-44.	6.0	7
18	Tectono - Magmatic and stratigraphic evolution of final rifting and breakup: Evidence from the tip of the southwestern propagator in the south China sea. Marine and Petroleum Geology, 2021, 129, 105079.	3.3	8

#	Article	IF	CITATIONS
19	A kinematic reconstruction of Iberia using intracontinental strikeâ€slip corridors. Terra Nova, 2021, 33, 573-581.	2.1	8
20	The role of inheritance in forming rifts and rifted margins and building collisional orogens: a Biscay-Pyrenean perspective. Bulletin - Societie Geologique De France, 2021, 192, 55.	2.2	16
21	Cenozoic mountain building and topographic evolution in Western Europe: impact of billions of years of lithosphere evolution and plate kinematics. Bulletin - Societie Geologique De France, 2021, 192, 56.	2.2	21
22	Reactivation of a hyperextended rift system: The Basque–Cantabrian Pyrenees case. Basin Research, 2021, 33, 3077-3101.	2.7	12
23	Geodynamic evolution of a wide plate boundary in the Western Mediterranean, near-field <i>versus</i> far-field interactions. Bulletin - Societie Geologique De France, 2021, 192, 48.	2.2	29
24	The tectono-stratigraphic and magmatic evolution of conjugate rifted margins: Insights from the NW South China Sea. Journal of Geodynamics, 2021, 148, 101877.	1.6	13
25	Reappraisal of the magma-rich versus magma-poor rifted margin archetypes. Geological Society Special Publication, 2020, 476, 23-47.	1.3	42
26	Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre―to postâ€rift sedimentary sequence (SE Switzerland, N ITALY). Basin Research, 2020, 32, 91-115.	2.7	22
27	Tectono-sedimentary evolution of a fossil ocean-continent transition: Tasna nappe, central Alps (SE) Tj ETQq1 1	0.7 <u>8</u> 4314	rgBT /Overlo
28	Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results. Earth and Planetary Science Letters, 2020, 531, 115932.	4.4	72
29	Geochemical characteristics of basalts related to incipient oceanization: The example from the Alpineâ€Tethys OCTs. Terra Nova, 2020, 32, 75-88.	2.1	12
30	The nature of the interface between basalts and serpentinized mantle in oceanic domains: Insights from a geological section in the Alps. Tectonophysics, 2020, 797, 228646.	2.2	8
31	Unravelling the architecture and evolution of the inverted multi-stage North Iberian-Bay of Biscay rift. Gondwana Research, 2020, 88, 67-87.	6.0	19
32	Role of rift-inheritance and segmentation for orogenic evolution: example from the Pyrenean-Cantabrian system. Bulletin - Societie Geologique De France, 2020, 191, 18.	2.2	34
33	Discovery of Megaâ€Sheath Folds Flooring the Liwan Subbasin (South China Sea): Implications for the Rheology of Hyperextended Crust. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009023.	2.5	17
34	Impact of crust–mantle mechanical coupling on the topographic and thermal evolutions during the necking phase of â€~magma-poor' and â€~sediment-starved' rift systems: A numerical modeling study. Tectonophysics, 2020, 786, 228472.	2.2	16
35	The Grès Singuliers of the Mont Blanc region (France and Switzerland): stratigraphic response to rifting and crustal necking in the Alpine Tethys. International Journal of Earth Sciences, 2020, 109, 2325-2352.	1.8	18
36	Reply to Discussion on †Breakup continents at magma poor rifted margins: a seismic v. outcrop perspective'. Journal of the Geological Society, London, 175, 875-882. Journal of the Geological Society, 2020, 177, 667-669.	2.1	0

#	Article	IF	CITATIONS
37	Magnetic characterization of the zigzag shaped Jâ€anomaly: Implications for kinematics and breakup processes at the Iberia–Newfoundland margins. Terra Nova, 2020, 32, 369-380.	2.1	12
38	Measurements of the extension required for crustal breakup on the magma-poor Iberia-Newfoundland conjugate margins. Marine and Petroleum Geology, 2020, 118, 104403.	3.3	5
39	Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: new constraints from the Chaînons Béarnais (W Pyrenees). International Journal of Earth Sciences, 2020, 109, 1071-1093.	1.8	17
40	The Basque – Cantabrian Pyrenees: report of data analysis. Bulletin - Societie Geologique De France, 2020, 191, 22.	2.2	7
41	The syn-rift stratigraphic record across a fossil hyper-extended rifted margin: the example of the northwestern Adriatic margin exposed in the Central Alps. International Journal of Earth Sciences, 2019, 108, 2071-2095.	1.8	34
42	Emersion of Distal Domains in Advanced Stages of Continental Rifting Explained by Asynchronous Crust and Mantle Necking. Geochemistry, Geophysics, Geosystems, 2019, 20, 3821-3840.	2.5	23
43	Controls on the Thermomechanical Evolution of Hyperextended Lithosphere at Magmaâ€Poor Rifted Margins: The Example of Espirito Santo and the Kwanza Basins. Geochemistry, Geophysics, Geosystems, 2019, 20, 5148-5176.	2.5	12
44	Thermal Evolution of Asymmetric Hyperextended Magmaâ€Poor Rift Systems: Results From Numerical Modeling and Pyrenean Field Observations. Geochemistry, Geophysics, Geosystems, 2019, 20, 4567-4587.	2.5	27
45	Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland. International Journal of Earth Sciences, 2019, 108, 2443-2467.	1.8	22
46	Tectono‣edimentary Analysis of the Hyperextended Liwan Sag Basin (Midnorthern Margin of the) Tj ETQq0 0 () rgBT /O 2.8	verlock 10 Tf : 27
47	The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins. Earth-Science Reviews, 2019, 196, 102882.	9.1	34
48	Origin of widespread Cretaceous alkaline magmatism in the Central Atlantic: A single melting anomaly?. Lithos, 2019, 342-343, 480-498.	1.4	21
49	Impact of Mafic Underplating and Mantle Depletion on Subsequent Rifting: A Numerical Modeling Study. Tectonics, 2019, 38, 2185-2207.	2.8	8
50	Long-lived mega fault-scarps and related breccias at distal rifted margins: insights from present-day and fossil analogues. Journal of the Geological Society, 2019, 176, 801-816.	2.1	24
51	Syntectonic carbonation during synmagmatic mantle exhumation at an ocean-continent transition. Geology, 2019, 47, 183-186.	4.4	18
52	Introduction to "Orogenic Cycles: From Field Observations to Global Geodynamics― Tectonics, 2019, 38, 3-6.	2.8	0
53	Potential role of lithospheric mantle composition in the Wilson cycle: a North Atlantic perspective. Geological Society Special Publication, 2019, 470, 157-172.	1.3	21
54	Constraints Imposed by Rift Inheritance on the Compressional Reactivation of a Hyperextended Margin: Mapping Rift Domains in the North Iberian Margin and in the Cantabrian Mountains. Tectonics, 2018, 37, 758-785.	2.8	41

#	Article	IF	CITATIONS
55	Intraplate Deformation of Oceanic Crust in the West Somali Basin: Insights From Longâ€offset Reflection Seismic Data. Tectonics, 2018, 37, 588-603.	2.8	25
56	Oceanic basement roughness alongside magma-poor rifted margins: insight into initial seafloor spreading. Geophysical Journal International, 2018, 212, 900-915.	2.4	12
57	Kinematic Evolution of the Southern North Atlantic: Implications for the Formation of Hyperextended Rift Systems. Tectonics, 2018, 37, 89-118.	2.8	122
58	Threeâ€Dimensional Architecture, Structural Evolution, and Role of Inheritance Controlling Detachment Faulting at a Hyperextended Distal Margin: The Example of the Err Detachment System (SE) Tj ETQq	0 0.0 rgBT	/Overlock 10
59	Silica-rich septarian concretions in biogenic silica-poor sediments: A marker of hydrothermal activity at fossil hyper-extended rifted margins (Err nappe, Switzerland). Sedimentary Geology, 2018, 378, 19-33.	2.1	7
60	Necking of the Lithosphere: A Reappraisal of Basic Concepts With Thermoâ€Mechanical Numerical Modeling. Journal of Geophysical Research: Solid Earth, 2018, 123, 5279-5299.	3.4	27
61	The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports, 2018, 8, 9591.	3.3	75
62	Structure of the ocean–continent transition, location of the continent–ocean boundary and magmatic type of the northern Angolan margin from integrated quantitative analysis of deep seismic reflection and gravity anomaly data. Geological Society Special Publication, 2017, 438, 159-176.	1.3	11
63	Unravelling the along-strike variability of the Angola–Gabon rifted margin: a mapping approach. Geological Society Special Publication, 2017, 438, 49-76.	1.3	49
64	Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. , 2017, 13, 559-576.		52
65	Evidence of hydrothermal fluid flow in a hyperextended rifted margin: the case study of the Err nappe (SE Switzerland). Swiss Journal of Geosciences, 2017, 110, 439-456.	1.2	20
66	U–Pb geochronology of the Sondalo gabbroic complex (Central Alps) and its position within the Permian post-Variscan extension. International Journal of Earth Sciences, 2017, 106, 2873-2893.	1.8	30
67	Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys?. Tectonophysics, 2017, 705, 42-62.	2.2	24
68	Defining diagnostic criteria to describe the role of rift inheritance in collisional orogens: the case of the Err-Platta nappes (Switzerland). Swiss Journal of Geosciences, 2017, 110, 419-438.	1.2	34
69	Seawater storage and element transfer associated with mantle serpentinization in magma-poor rifted margins: A quantitative approach. Earth and Planetary Science Letters, 2017, 459, 227-237.	4.4	28
70	Architecture of the Distal Piedmontâ€Ligurian Rifted Margin in NW Italy: Hints for a Flip of the Rift System Polarity. Tectonics, 2017, 36, 2388-2406.	2.8	35
71	Tectonoâ€thermal Evolution of a Distal Rifted Margin: Constraints From the Calizzano Massif (Prepiedmontâ€Briançonnais Domain, Ligurian Alps). Tectonics, 2017, 36, 3209-3228.	2.8	22
72	Birth of an oceanic spreading center at a magma-poor rift system. Scientific Reports, 2017, 7, 15072.	3.3	38

#	Article	IF	CITATIONS
73	Nature and origin of the Jâ€magnetic anomaly offshore Iberia–Newfoundland: implications for plate reconstructions. Terra Nova, 2017, 29, 20-28.	2.1	65
74	Fault systems at hyper-extended rifted margins and embryonic oceanic crust: Structural style, evolution and relation to magma. Marine and Petroleum Geology, 2016, 76, 51-67.	3.3	43
75	Evidence for magma entrapment below oceanic crust from deep seismic reflections in the Western Somali Basin. Geology, 2016, 44, 407-410.	4.4	19
76	The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology, 2016, 44, 475-478.	4.4	99
77	Constraining lithosphere deformation modes during continental breakup for the Iberia–Newfoundland conjugate rifted margins. Tectonophysics, 2016, 680, 28-49.	2.2	17
78	The Sondalo gabbro contact aureole (Campo unit, Eastern Alps): implications for mid-crustal mafic magma emplacement. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	22
79	Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos, 2016, 266-267, 233-263.	1.4	74
80	Geophysical fingerprints of hyper-extended, exhumed and embryonic oceanic domains: the example from the Iberia–Newfoundland rifted margins. Marine Geophysical Researches, 2016, 37, 185-205.	1.2	20
81	The palaeo-bathymetry of base Aptian salt deposition on the northern Angolan rifted margin: constraints from flexural back-stripping and reverse post-break-up thermal subsidence modelling. Petroleum Geoscience, 2016, 22, 59-70.	1.5	7
82	Application of the critical Coulomb wedge theory to hyper-extended, magma-poor rifted margins. Earth and Planetary Science Letters, 2016, 442, 121-132.	4.4	24
83	Upper-plate magma-poor rifted margins: Stratigraphic architecture and structural evolution. Marine and Petroleum Geology, 2016, 69, 241-261.	3.3	70
84	Tracing mantleâ€reacted fluids in magmaâ€poor rifted margins: The example of <scp>A</scp> lpine <scp>T</scp> ethyan rifted margins. Geochemistry, Geophysics, Geosystems, 2015, 16, 3271-3308.	2.5	46
85	A crustalâ€scale view at rift localization along the fossil Adriatic margin of the Alpine Tethys preserved in NW Italy. Tectonics, 2015, 34, 1927-1951.	2.8	58
86	Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology, 2015, 43, 15-18.	4.4	133
87	Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: Constraints from seismic observations. Tectonics, 2015, 34, 753-783.	2.8	95
88	Structural and stratigraphic evolution of the Iberia–Newfoundland hyper-extended rifted margin: a quantitative modelling approach. Geological Society Special Publication, 2015, 413, 53-89.	1.3	42
89	Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach. Journal of the Geological Society, 2015, 172, 711-720.	2.1	50
90	Determining the COB location along the Iberian margin and Galicia Bank from gravity anomaly inversion, residual depth anomaly and subsidence analysis. Geophysical Journal International, 2015, 203, 1355-1372.	2.4	19

#	Article	IF	CITATIONS
91	The tectono-stratigraphic evolution of distal, hyper-extended magma-poor conjugate rifted margins: Examples from the Alpine Tethys and Newfoundland–Iberia. Marine and Petroleum Geology, 2015, 68, 54-72.	3.3	34
92	Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geological Society Special Publication, 2015, 413, 171-203.	1.3	66
93	The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling. Gondwana Research, 2015, 27, 140-164.	6.0	143
94	Rift processes in the Westralian Superbasin, North West Shelf, Australia: insights from 2D deep reflection seismic interpretation and potential fields modelling. APPEA Journal, 2015, 55, 400.	0.2	10
95	Magnetic signature of large exhumed mantle domains of the Southwest Indian Ridge – results from a deep-tow geophysical survey over 0 to 11 Ma old seafloor. Solid Earth, 2014, 5, 339-354.	2.8	19
96	Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics, 2014, 33, 1239-1276.	2.8	239
97	The Err detachment in SE Switzerland: a witness of how continents break apart. International Journal of Earth Sciences, 2014, 103, 121-122.	1.8	2
98	The role of riftâ€inherited hyperâ€extension in Alpineâ€type orogens. Terra Nova, 2014, 26, 347-353.	2.1	69
99	Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: The Alpine case study. Earth-Science Reviews, 2014, 131, 88-115.	9.1	110
100	Lower crustal bodies in the MÃre volcanic rifted margin: Geophysical determination and geological implications. Tectonophysics, 2014, 636, 143-157.	2.2	38
101	The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq–Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences, 2014, 103, 1569-1596.	1.8	137
102	Highâ€resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. Journal of Geophysical Research: Solid Earth, 2014, 119, 6399-6420.	3.4	83
103	Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 2013, 43, 21-47.	3.3	321
104	Deformation associated to exhumation of serpentinized mantle rocks in a fossil Ocean Continent Transition: The Totalp unit in SE Switzerland. Lithos, 2013, 175-176, 255-271.	1.4	23
105	New isotopic constraints on age and magma genesis of an embryonic oceanic crust: The Chenaillet Ophiolite in the Western Alps. Lithos, 2013, 160-161, 283-291.	1.4	70
106	The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magmaâ€poor rifted margins. Sedimentology, 2013, 60, 174-196.	3.1	104
107	Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochemistry, Geophysics, Geosystems, 2013, 14, 2575-2597.	2.5	174
108	Anatomy and tectono-sedimentary evolution of a rift-related detachment system: The example of the Err detachment (central Alps, SE Switzerland). Bulletin of the Geological Society of America, 2012, 124, 1535-1551.	3.3	59

#	Article	IF	CITATIONS
109	How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology, 2012, 40, 139-142.	4.4	136
110	Necking of continental crust in magmaâ€poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics, 2012, 31, .	2.8	184
111	The tectonoâ€sedimentary evolution of a supraâ€detachment rift basin at a deepâ€water magmaâ€poor rifted margin: the example of the Samedan Basin preserved in the Err nappe in SE Switzerland. Basin Research, 2011, 23, 652-677.	2.7	83
112	The Chenaillet Ophiolite in the French/Italian Alps: An ancient analogue for an Oceanic Core Complex?. Lithos, 2011, 124, 169-184.	1.4	107
113	Rift-related inheritance in orogens: a case study from the Austroalpine nappes in Central Alps (SE-Switzerland and N-Italy). International Journal of Earth Sciences, 2011, 100, 937-961.	1.8	76
114	Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nature Geoscience, 2011, 4, 549-553.	12.9	181
115	Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). AAPG Bulletin, 2010, 94, 957-975.	1.5	54
116	Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. International Journal of Earth Sciences, 2010, 99, 75-101.	1.8	142
117	From microcontinents to extensional allochthons: witnesses of how continents rift and break apart?. Petroleum Geoscience, 2010, 16, 189-197.	1.5	167
118	Plagioclase Peridotites in Ocean-Continent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere. Journal of Petrology, 2010, 51, 255-294.	2.8	183
119	3D architecture of a complex transcurrent rift system: The example of the Bay of Biscay–Western Pyrenees. Tectonophysics, 2010, 489, 210-226.	2.2	70
120	Extreme crustal thinning in the Bay of Biscay and the Western Pyrenees: From observations to modeling. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	66
121	Hyper-extended crust in the South Atlantic: in search of a model. Petroleum Geoscience, 2010, 16, 207-215.	1.5	175
122	The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: aÂnew point of view. International Journal of Earth Sciences, 2009, 98, 1581-1597.	1.8	347
123	Assessing the conditions of continental breakup at magma-poor rifted margins: What can we learn from slow spreading mid-ocean ridges?. Comptes Rendus - Geoscience, 2009, 341, 406-427.	1.2	63
124	Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 2009, 468, 131-148.	2.2	75
125	A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics, 2009, 473, 4-19.	2.2	238
126	Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 2009, 28, .	2.8	288

#	Article	IF	CITATIONS
127	Compressional structures on the West Iberia rifted margin: controls on their distribution. Geological Society Special Publication, 2008, 306, 169-183.	1.3	17
128	Tectonosedimentary evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup history. Tectonics, 2007, 26, n/a-n/a.	2.8	210
129	Observations from the Alpine Tethys and Iberia–Newfoundland margins pertinent to the interpretation of continental breakup. Geological Society Special Publication, 2007, 282, 291-324.	1.3	54
130	The rift-to-drift transition in the North Atlantic: A stuttering start of the MORB machine?. Geology, 2007, 35, 1087.	4.4	129
131	Exhumed mantle-forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies. Journal of Geophysical Research, 2007, 112, .	3.3	155
132	High degrees of melt extraction recorded by spinel harzburgite of the Newfoundland margin: The role of inheritance and consequences for the evolution of the southern North Atlantic. Earth and Planetary Science Letters, 2006, 252, 437-452.	4.4	116
133	A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 2006, 440, 324-328.	27.8	523
134	What is the tectono-metamorphic evolution of continental break-up: The example of the Tasna Ocean–Continent Transition. Journal of Structural Geology, 2006, 28, 1849-1869.	2.3	85
135	New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 2004, 93, 432.	1.8	385
136	Where did Gustav Steinmann see the trinity? Back to the roots of an Alpine ophiolite concept. , 2003, , .		27
137	Seismic reflectivity of detachment faults of the Iberian and Tethyan distal continental margins based on geological and petrophysical data. Tectonophysics, 2002, 350, 127-156.	2.2	12
138	Onset of magmatic accretion within a magma-poor rifted margin: a case study from the Platta ocean-continent transition, eastern Switzerland. Contributions To Mineralogy and Petrology, 2002, 144, 365-382.	3.1	94
139	The transition from rifting to sea-floor spreading within a magma-poor rifted margin: field and isotopic constraints. Terra Nova, 2002, 14, 156-162.	2.1	121
140	Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 2001, 413, 150-154.	27.8	531
141	Rifting along non-volcanic passive margins: stratigraphic and seismic evidence from the Mesozoic successions of the Alps and western Iberia. Geological Society Special Publication, 2001, 187, 429-452.	1.3	70
142	The Steinmann Trinity revisited: mantle exhumation and magmatism along an ocean-continent transition: the Platta nappe, eastern Switzerland. Geological Society Special Publication, 2001, 187, 235-266.	1.3	55
143	The role of detachment faulting in the formation of an ocean-continent transition: insights from the Iberia Abyssal Plain. Geological Society Special Publication, 2001, 187, 405-428.	1.3	110

Channelized fluid flow and mass transfer along a rift-related detachment fault (Eastern Alps,) Tj ETQq0 0 0 rgBT /Overlock 10_{43} for 62 Te

#	Article	IF	CITATIONS
145	Fluid- and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland). Journal of Structural Geology, 1999, 21, 777-793.	2.3	78
146	Architecture and tectonic evolution of nonvolcanic margins: Present-day Galicia and ancient Adria. Tectonics, 1999, 18, 1099-1119.	2.8	190
147	Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Bulletin of the Geological Society of America, 1996, 108, 1120-1133.	3.3	211
148	The role of extensional detachment systems in thinning the crust and exhuming granulites: analogies between the offshore Le Danois High and the onshore Labourd Massif in the Biscay/Pyrenean rifts. Bulletin - Societie Geologique De France, 0, , .	2.2	6