List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016538/publications.pdf Version: 2024-02-01

IAN KUZMIK

#	Article	IF	CITATIONS
1	Power electronics on InAlN/(In)GaN: Prospect for a record performance. IEEE Electron Device Letters, 2001, 22, 510-512.	2.2	516
2	Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method. IEEE Transactions on Electron Devices, 2002, 49, 1496-1498.	1.6	176
3	InAlN/GaN HEMTs: a first insight into technological optimization. IEEE Transactions on Electron Devices, 2006, 53, 422-426.	1.6	176
4	InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal. Semiconductor Science and Technology, 2002, 17, 540-544.	1.0	131
5	A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide-semiconductor high-electron-mobility transistors. Applied Physics Letters, 2012, 100, .	1.5	130
6	Gate Reliability Investigation in Normally-Off p-Type-GaN Cap/AlGaN/GaN HEMTs Under Forward Bias Stress. IEEE Electron Device Letters, 2016, 37, 385-388.	2.2	126
7	State of the art on gate insulation and surface passivation for GaN-based power HEMTs. Materials Science in Semiconductor Processing, 2018, 78, 85-95.	1.9	108
8	Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors. Journal of Applied Physics, 2009, 106, .	1.1	96
9	Technology and Performance of InAlN/AlN/GaN HEMTs With Gate Insulation and Current Collapse Suppression Using Zr\$hbox{O}_{m 2}\$ or Hf \$hbox{O}_{m 2}\$. IEEE Transactions on Electron Devices, 2008, 55, 937-941.	1.6	86
10	Transient Thermal Characterization of AlGaN/GaN HEMTs Grown on Silicon. IEEE Transactions on Electron Devices, 2005, 52, 1698-1705.	1.6	78
11	Gate insulation and drain current saturation mechanism in InAlNâ^•GaN metal-oxide-semiconductor high-electron-mobility transistors. Applied Physics Letters, 2007, 91, .	1.5	71
12	MOCVD of HfO ₂ and ZrO ₂ high- <i>k</i> gate dielectrics for InAlN/AlN/GaN MOS-HEMTs. Semiconductor Science and Technology, 2007, 22, 1272-1275.	1.0	62
13	Ultrathin InAlN/AlN Barrier HEMT With High Performance in Normally Off Operation. IEEE Electron Device Letters, 2009, 30, 1030-1032.	2.2	57
14	Investigation of the thermal boundary resistance at the III-Nitride/substrate interface using optical methods. Journal of Applied Physics, 2007, 101, 054508.	1.1	55
15	Bulk and interface trapping in the gate dielectric of GaN based metal-oxide-semiconductor high-electron-mobility transistors. Applied Physics Letters, 2013, 102, .	1.5	51
16	Gate-lag and drain-lag effects in (GaN)/InAlN/GaN and InAlN/AlN/GaN HEMTs. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2019-2022.	0.8	49
17	Temperature dependence of GaN Schottky diodes l–V characteristics. Microelectronic Engineering, 2005, 81, 181-187	1.1	47
18	Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors. Applied Physics Letters, 2015, 107, .	1.5	46

#	Article	IF	CITATIONS
19	Electrostatic discharge effects in AlGaN/GaN high-electron-mobility transistors. Applied Physics Letters, 2003, 83, 4655-4657.	1.5	43
20	Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations. Journal of Applied Physics, 2014, 116, .	1.1	43
21	Self-Heating in GaN Transistors Designed for High-Power Operation. IEEE Transactions on Electron Devices, 2014, 61, 3429-3434.	1.6	40
22	Thermally induced voltage shift in capacitance–voltage characteristics and its relation to oxide/semiconductor interface states in Ni/Al ₂ O ₃ /InAlN/GaN heterostructures. Semiconductor Science and Technology, 2009, 24, 035008.	1.0	39
23	Hot-Electron-Related Degradation in InAlN/GaN High-Electron-Mobility Transistors. IEEE Transactions on Electron Devices, 2014, 61, 2793-2801.	1.6	37
24	ZrO2/(Al)GaN metal–oxide–semiconductor structures: characterization and application. Semiconductor Science and Technology, 2004, 19, 1364-1368.	1.0	34
25	Proposal of High-Electron Mobility Transistors With Strained InN Channel. IEEE Transactions on Electron Devices, 2011, 58, 720-724.	1.6	33
26	Schottky-barrier normally off GaN/InAlN/AlN/GaN HEMT with selectively etched access region. IEEE Electron Device Letters, 2013, 34, 432-434.	2.2	33
27	Current transport and barrier height evaluation in Ni/InAlN/GaN Schottky diodes. Applied Physics Letters, 2010, 96, 223501.	1.5	32
28	Monolithic GaAs MESFET power sensor microsystem. Electronics Letters, 1995, 31, 1914-1915.	0.5	31
29	Proposal and Performance Analysis of Normally Off \$ hbox{n}^{++}\$ GaN/InAlN/AlN/GaN HEMTs With 1-nm-Thick InAlN Barrier. IEEE Transactions on Electron Devices, 2010, 57, 2144-2154.	1.6	31
30	Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Applied Physics Letters, 2014, 104, .	1.5	31
31	Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	30
32	Investigation of â€~surface donors' in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties. Applied Surface Science, 2017, 426, 656-661.	3.1	27
33	Control of Threshold Voltage in GaN Based Metal–Oxide–Semiconductor High-Electron Mobility Transistors towards the Normally-Off Operation. Japanese Journal of Applied Physics, 2013, 52, 08JN08.	0.8	26
34	Thermal characterization of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond. Journal of Applied Physics, 2011, 109, .	1.1	25
35	Electrical overstress in AlGaN/GaN HEMTs: study of degradation processes. Solid-State Electronics, 2004, 48, 271-276.	0.8	24
36	Thermal actuation of a GaAs cantilever beam. Journal of Micromechanics and Microengineering, 2000, 10, 293-298.	1.5	23

#	Article	IF	CITATIONS
37	Selfâ€aligned normallyâ€off metal–oxide–semiconductor n ⁺⁺ GaN/InAlN/GaN high electron mobility transistors. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1086-1090.	0.8	23
38	Current conduction and saturation mechanism in AlGaNâ^•GaN ungated structures. Journal of Applied Physics, 2006, 99, 123720.	1.1	22
39	Characterization of capture cross sections of interface states in dielectric/III-nitride heterojunction structures. Journal of Applied Physics, 2016, 119, .	1.1	21
40	Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	0.6	21
41	Annealing of Schottky contacts deposited on dry etched AlGaN/GaN. Semiconductor Science and Technology, 2002, 17, L76-L78.	1.0	19
42	Current collapse reduction in InAlN/GaN MOS HEMTs by in situ surface pre-treatment and atomic layer deposition of ZrO2 high-k gate dielectrics. Electronics Letters, 2009, 45, 570.	0.5	17
43	N-Polarity InN/GaN/InAlN High-Electron-Mobility Transistors. Applied Physics Express, 2012, 5, 044101.	1.1	17
44	Influence of processing and annealing steps on electrical properties of InAlN/GaN high electron mobility transistor with Al2O3 gate insulation and passivation. Solid-State Electronics, 2012, 67, 74-78.	0.8	17
45	The fabrication of thin GaAs cantilever beams for power sensor microsystem using RIE. Vacuum, 1996, 47, 1215-1217.	1.6	16
46	Offâ€state breakdown in InAlN/AlN/GaN high electron mobility transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S925.	0.8	16
47	Optimization and performance of Al2O3/GaN metal–oxide–semiconductor structures. Microelectronics Reliability, 2007, 47, 790-793.	0.9	15
48	Interface States and Trapping Effects in Al ₂ O ₃ - and ZrO ₂ /InAIN/AIN/GaN Metal–Oxide–Semiconductor Heterostructures. Japanese Journal of Applied Physics, 2009, 48, 090201.	0.8	14
49	Simulation study of interface traps and bulk traps in n++GaN/InAIN/AIN/GaN high electron mobility transistors. Applied Surface Science, 2014, 312, 157-161.	3.1	14
50	Correlation of Threading Dislocations with the Electron Concentration and Mobility in InN Heteroepitaxial Layers Grown by MBE. ECS Journal of Solid State Science and Technology, 2020, 9, 015006.	0.9	14
51	Material and device issues of AlGaN/GaN HEMTs on silicon substrates. Microelectronics Journal, 2003, 34, 435-437.	1.1	13
52	Low resistance ohmic contacts annealed at 600 °C on a InAlN/GaN heterostructure with SiCl4-reactive ion etching surface treatment. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S999-S1002.	0.8	13
53	Buffer-Related Degradation Aspects of Single and Double-Heterostructure Quantum Well InAlN/GaN High-Electron-Mobility Transistors. Japanese Journal of Applied Physics, 2012, 51, 054102.	0.8	13
54	Technology of integrated self-aligned E/D-mode n ⁺⁺ GaN/InAlN/AlN/GaN MOS HEMTs for mixed-signal electronics. Semiconductor Science and Technology, 2016, 31, 065011.	1.0	12

#	Article	IF	CITATIONS
55	Performance of GaAs micromachined microactuator. Sensors and Actuators A: Physical, 2000, 85, 365-370.	2.0	11
56	Thermal distribution during destructive pulses in ESD protection devices using a single-shot two-dimensional interferometric method. IEEE Transactions on Device and Materials Reliability, 2003, 3, 197-201.	1.5	11
57	A new numerical and experimental analysis tool for ESD devices by means of the transient interferometric technique. IEEE Electron Device Letters, 2005, 26, 916-918.	2.2	11
58	Transient self-heating effects in multifinger AlGaN/GaN HEMTs with metal airbridges. Solid-State Electronics, 2007, 51, 969-974.	0.8	11
59	Metal-related gate sinking due to interfacial oxygen layer in Ir/InAlN high electron mobility transistors. Applied Physics Letters, 2010, 96, 263515.	1.5	11
60	Characterization of Plasma-Induced Damage of Selectively Recessed GaN/InAlN/AlN/GaN Heterostructures Using SiCl4and SF6. Japanese Journal of Applied Physics, 2010, 49, 116506.	0.8	11
61	Proposal of normally-off InN-channel high-electron mobility transistors. Semiconductor Science and Technology, 2014, 29, 035015.	1.0	11
62	Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition. Applied Surface Science, 2018, 461, 255-259.	3.1	11
63	Patterning of cantilevers for power sensor microsystem. Vacuum, 1998, 51, 307-309.	1.6	10
64	Influence of GaN capping on performance of InAlN/AlN/GaN MOSâ€HEMT with Al ₂ O ₃ gate insulation grown by CVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1956-1958.	0.8	10
65	InAlNâ^•GaN metal-oxide-semiconductor high electron mobility transistor with Al[sub 2]O[sub 3] insulating films grown by metal organic chemical vapor deposition using Ar and NH[sub 3] carrier gases. Journal of Vacuum Science & Technology B, 2009, 27, 218.	1.3	10
66	Self-heating phenomena in high-power III-N transistors and new thermal characterization methods developed within EU project TARGET. International Journal of Microwave and Wireless Technologies, 2009, 1, 153-160.	1.5	10
67	Ni/Au–Al2O3 gate stack prepared by low-temperature ALD and lift-off for MOS HEMTs. Microelectronic Engineering, 2013, 112, 204-207.	1.1	10
68	Annealing, temperature, and bias-induced threshold voltage instabilities in integrated E/D-mode InAlN/GaN MOS HEMTs. Applied Physics Letters, 2017, 111, .	1.5	10
69	Evidence of relationship between strain and In-incorporation: Growth of N-polar In-rich InAlN buffer layer by OMCVD. Journal of Applied Physics, 2019, 125, .	1.1	10
70	d.c. Performance of short-channel ion-implanted GaAs MESFETs (The role of gate length shortening). Solid-State Electronics, 1990, 33, 1223-1227.	0.8	9
71	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.1 mml:mi	9
72	Study of the correlation between GaN material properties and the growth conditions of radio frequency plasma-assisted molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 304-308.	1.7	8

#	Article	IF	CITATIONS
73	Current conduction mechanism and electrical break-down in InN grown on GaN. Applied Physics Letters, 2017, 110, .	1.5	8
74	Growth evolution of N-polar indium-rich InAlN layer on c-sapphire via strain relaxation by ultrathin AION interlayer. Applied Surface Science, 2020, 502, 144086.	3.1	8
75	Elimination of surface band bending on N-polar InN with thin GaN capping. Applied Physics Letters, 2015, 107, .	1.5	7
76	Characterization of Monolithic InAlN/GaN NAND Logic Cell Supported by Circuit and Device Simulations. IEEE Transactions on Electron Devices, 2018, 65, 2666-2669.	1.6	7
77	Semi-insulating GaN for vertical structures: role of substrate selection and growth pressure. Materials Science in Semiconductor Processing, 2020, 118, 105203.	1.9	7
78	InN: Breaking the limits of solid-state electronics. AIP Advances, 2021, 11, .	0.6	7
79	Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique. Microelectronics Journal, 1998, 29, 191-198.	1.1	6
80	Optimization of the ohmic contact processing in InAlN//GaN high electron mobility transistors for lower temperature of annealing. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 108-111.	0.8	6
81	Polarizationâ€Engineered n ⁺ GaN/InGaN/AlGaN/GaN Normallyâ€Off MOS HEMTs. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700407.	0.8	6
82	High resolution physical analysis of ohmic contact formation at GaN-HEMT devices. Microelectronics Reliability, 2017, 76-77, 338-343.	0.9	6
83	Structural, electrical, and optical properties of annealed InN films grown on sapphire and silicon substrates. Thin Solid Films, 2019, 672, 114-119.	0.8	6
84	Temperature analysis of AlGaN/GaN High-Electron-Mobility Transistors using micro-Raman scattering spectroscopy and Transient Interferometric Mapping. , 2006, , .		5
85	Creation of Two-Dimensional Electron Gas and Role of Surface Donors in III-N Metal-Oxide-Semiconductor High-Electron Mobility Transistors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800090.	0.8	5
86	Enhancement of channel electric field in AlGaN/GaN multi-nanochannel high electron mobility transistors. Journal of Applied Physics, 2018, 124, 224502.	1.1	5
87	Non-conventional scans in high-resolution X-ray diffraction analysis of epitaxial systems. Applied Surface Science, 2018, 461, 23-32.	3.1	5
88	Generation of hole gas in non-inverted InAl(Ga)N/GaN heterostructures. Applied Physics Express, 2019, 12, 014001.	1.1	5
89	Analysis and Modeling of Vertical Current Conduction and Breakdown Mechanisms in Semi-Insulating GaN Grown on GaN: Role of Deep Levels. IEEE Transactions on Electron Devices, 2021, 68, 2365-2371.	1.6	5
90	Reactive ion etching of Î ² -SiC in CCl2F2/O2. Electronics Letters, 1993, 29, 18-19.	0.5	4

#	Article	IF	CITATIONS
91	Study of Schottky contact formation on CH4/H2reactive-ion-etched InAlAs. Semiconductor Science and Technology, 1994, 9, 1226-1229.	1.0	4
92	6H-SiC Schottky Diode Edge Terminated Using Amorphous SiC by Sputtering Method. Materials Science Forum, 1998, 264-268, 925-928.	0.3	4
93	Technology and performance of 150nm gate length InGaP/InGaAs/GaAs pHEMTs. Vacuum, 2001, 61, 323-327.	1.6	4
94	InAlN/GaN heterostructures for microwave power and beyond. , 2009, , .		4
95	Material and device issues of InAlN/GaN heterostructures. , 2012, , .		4
96	A Promising New n++-GaN/InAlN/GaN HEMT Concept for High-Frequency Applications. ECS Transactions, 2013, 50, 291-296.	0.3	4
97	Impact of oxide/barrier charge on threshold voltage instabilities in AlGaN/GaN metal-oxide-semiconductor heterostructures. Materials Science in Semiconductor Processing, 2019, 91, 356-361.	1.9	4
98	Growth and Properties of Nâ€Polar InN/InAlN Heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000197.	0.8	4
99	Properties of WN x /GaAs Schottky contacts prepared by ion implantation of nitrogen. Journal of Materials Science: Materials in Electronics, 1992, 3, 157-161.	1.1	3
100	Thermal distribution during destructive pulses in ESD protection devices using a single-shot, two-dimensional interferometric method. , 0, , .		3
101	Study of Si implantation into Mgâ€doped GaN for MOSFETs. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1964-1966.	0.8	3
102	Device and circuit models of InAlN/GaN D- and dual-gate E-mode HEMTs for design and characterisation of monolithic NAND logic cell. , 2018, , .		3
103	InGaN/(GaN)/AlGaN/GaN normally-off metal-oxide-semiconductor high-electron mobility transistors with etched access region. Japanese Journal of Applied Physics, 2019, 58, SCCD21.	0.8	3
104	Investigation of interfaces and threshold voltage instabilities in normally-off MOS-gated InGaN/AlGaN/GaN HEMTs. Applied Surface Science, 2020, 528, 146824.	3.1	3
105	Co-implantation of Mg and Si in GaAs MESFETs. Solid-State Electronics, 1993, 36, 427-430.	0.8	2
106	Backgating, high-current and breakdown characterisation of AlGaN/GaN HEMTs on silicon substrates. , 0, , .		2
107	Buffer-Related Degradation Aspects of Single and Double-Heterostructure Quantum Well InAlN/GaN High-Electron-Mobility Transistors. Japanese Journal of Applied Physics, 2012, 51, 054102.	0.8	2
108	Degradation Study of Single and Double-Heterojunction InAlN/GaN HEMTs by Two-Dimensional Simulation. ECS Transactions, 2013, 50, 223-228.	0.3	2

#	Article	IF	CITATIONS
109	Post-deposition annealing and thermal stability of integrated self-aligned E/D-mode n ⁺⁺ GaN/InAIN/AIN/GaN MOS HEMTs. , 2016, , .		2
110	Determination of Secondary-Ions Yield in SIMS Depth Profiling of Si, Mg, and C Ions Implanted Gan Epitaxial Layers. , 2018, , .		2
111	A systematic study of MOCVD reactor conditions and Ga memory effect on properties of thick InAl(Ga)N layers: a complete depth-resolved investigation. CrystEngComm, 2020, 22, 130-141.	1.3	2
112	A three layer model of planar alloyed ohmic contacts to n-GaAs. Solid-State Electronics, 1990, 33, 1531-1538.	0.8	1
113	Schottky contacts on reactive-ion etched InGaP. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 2016.	1.6	1
114	Schottky contact investigation on reactive ion etched 6H α-SiC. Diamond and Related Materials, 1997, 6, 1459-1462.	1.8	1
115	Study of bimetallic effect in a GaAs cantilever beam of power sensor microsystem. , 0, , .		1
116	Investigation of self-heating effects in AlGaN-GaN HEMTs. , 0, , .		1
117	InGaAs/InGaP HEMTs: technological optimization and analytical modelling. Vacuum, 2001, 61, 333-337.	1.6	1
118	Predictive device simulation for ESD protection structures validated with transient interferometric thermal-mapping experiments. , 0, , .		1
119	Current gain collapse in HBTs analysed by transient interferometric mapping method. , 2007, , .		1
120	Normally-off InAlN/GaN HEMTs with n ⁺⁺ GaN cap layer: A simulation study. , 2011, , .		1
121	Early stage degradation of InAlN/GaN HEMTs during electrical stress. , 2012, , .		1
122	Simulation Analysis of InAlN/GaN Monolithic NAND Logic Cell. , 2018, , .		1
123	Device and Circuit Models of Monolithic InAlN/GaN NAND and NOR Logic Cells Comprising D- and E-Mode HEMTs. Journal of Circuits, Systems and Computers, 2019, 28, 1940009.	1.0	1
124	Bandgap, electrical and structural properties of thick InN (0001) films grown under optimal conditions. Journal of Physics: Conference Series, 2019, 1190, 012010.	0.3	1
125	Morphology, Crystalline Quality, and Optical Properties of MOCVD-grown InN/InAlN Heterostructures. , 2020, , .		1
126	The PHOTOFET method in submicrometre GaAs MESFETS: substrate leakage current effect. Semiconductor Science and Technology, 1992, 7, 935-939.	1.0	0

#	Article	IF	CITATIONS
127	Improvements in three-terminal thermoconverter technique. , 0, , .		Ο
128	Thin film resistance temperature sensors on GaAs. , 0, , .		0
129	Electrical field mapping in InGaP HEMTs and GaAs terahertz emitters using backside infrared OBIC technique Microelectronics Reliability, 2002, 42, 1673-1677.	0.9	0
130	Transient interferometric mapping of temperature and free carriers in semiconductor devices. , 0, , .		0
131	Low frequency noise characterization of the GaN LEDs. , 0, , .		0
132	Accelerated Aging of GaN Light Emitting Diodes Studied by 1/f and RTS Noise. AIP Conference Proceedings, 2005, , .	0.3	0
133	Technology, properties and limitations of state-of-the-art InAlN/GaN HEMTs. , 2005, , .		0
134	Rapid thermal annealing and performance of Al2O3/GaN metal-oxide-semiconductor structures. , 2006, , .		0
135	InAIN/GaN MOSHEMT with Al <inf>2</inf> O <inf>3</inf> insulating film. , 2008, , .		0
136	Atomic Layer Deposition of High-k Oxides on InAlN/GaN-based Materials. ECS Transactions, 2009, 25, 123-129.	0.3	0
137	Role of the gate-to-drain distance in the performance of the normally-off InAlN/GaN HEMTs. , 2010, , .		0
138	Improvements of High Performance 2-nm-thin InAlNâ^•AlN Barrier Devices by Interface Engineering. , 2011, ,		0
139	Electrothermal analysis of In <inf>0.12</inf> Al <inf>0.88</inf> N/GaN HEMTs. , 2012, , .		0
140	Impact of the buffer structure on trapping characteristics of normally-off p-GaN/AlGaN/GaN HEMTs for power switching applications. , 2014, , .		0
141	Different polarities of InN (0001) heterostructures on Si (111) substrates. , 2014, , .		0
142	Time resolved EBIC study of InAlN/GaN HFETs. , 2014, , .		0
143	Material and electrical properties of N-polar (GaN)/InN surfaces. , 2014, , .		0
144	Degradation of AlGaN/GaN high-electron mobility transistors in the current-controlled off-state breakdown. Journal of Applied Physics, 2014, 115, 164504.	1.1	0

#	Article	IF	CITATIONS
145	Temperature-dependent of sub-threshold slope of AlGaN/GaN MOSHFETs with HfO <inf>2</inf> gate oxide prepared by ALD. , 2016, , .		0
146	Effect of HCl pretreatment on the oxide/semiconductor interface state density in AlGaN/GaN MOS-HEMT structures with MOCVD grown A1 ₂ O ₃ gate dielectric. , 2016, , .		0
147	DC and pulsed IV characterisation of AlGaN/GaN MOS-HEMT structures with Al <inf>2</inf> O <inf>3</inf> gate dielectric prepared by various techniques. , 2016, , .		0
148	Performance analysis of monolithically integrated depletion-/enhancement-mode InAlN/GaN heterostructure HEMT transistors. , 2017, , .		0
149	Technology and performance of E/D-mode InAlN/GaN HEMTs for mixed-signal electronics. , 2018, , .		0
150	InN crystal habit, structural, electrical, and optical properties affected by sapphire substrate nitridation in N-polar InN/InAlN heterostructures. Semiconductor Science and Technology, 2021, 36, 075025.	1.0	0
151	Experimental Investigation on Carrier Dynamics at the Thermal Breakdown. AIP Conference Proceedings, 2007, , .	0.3	0
152	Invited: Polarization engineering in GaN-based normally-off transistors. , 2021, , .		0