Luis Carrasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016514/publications.pdf

Version: 2024-02-01

242 papers

11,572 citations

26567 56 h-index 89 g-index

244 all docs

244 docs citations

times ranked

244

7743 citing authors

#	Article	IF	CITATIONS
1	Polymicrobial Infections and Neurodegenerative Diseases. Current Clinical Microbiology Reports, 2020, 7, 20-30.	1.8	5
2	Parkinson's Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue. International Journal of Biological Sciences, 2020, 16, 1135-1152.	2.6	37
3	A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. Rna, 2019, 25, 431-452.	1.6	8
4	Searching for Bacteria in Neural Tissue From Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2019, 13, 171.	1.4	27
5	System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Molecular Cell, 2019, 74, 196-211.e11.	4.5	137
6	Brain Microbiota in Huntington's Disease Patients. Frontiers in Microbiology, 2019, 10, 2622.	1.5	24
7	Human and Microbial Proteins From Corpora Amylacea of Alzheimer's Disease. Scientific Reports, 2018, 8, 9880.	1.6	37
8	The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by Hepatitis C Virus IRES in Human Cells. Frontiers in Microbiology, 2018, 9, 207.	1.5	31
9	Infection of Fungi and Bacteria in Brain Tissue From Elderly Persons and Patients With Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 159.	1.7	125
_			
10	The Regulation of Translation in Alphavirus-Infected Cells. Viruses, 2018, 10, 70.	1.5	63
10	The Regulation of Translation in Alphavirus-Infected Cells. Viruses, 2018, 10, 70. Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease, 2018, 117, 42-61.	2.1	63 39
	Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in		
11	Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease, 2018, 117, 42-61. Identification of Fungal Species in Brain Tissue from Alzheimer's Disease by Next-Generation	2.1	39
11 12	Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease, 2018, 117, 42-61. Identification of Fungal Species in Brain Tissue from Alzheimer's Disease by Next-Generation Sequencing. Journal of Alzheimer's Disease, 2017, 58, 55-67. Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiology of	2.1	39 89
11 12 13	Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease, 2018, 117, 42-61. Identification of Fungal Species in Brain Tissue from Alzheimer's Disease by Next-Generation Sequencing. Journal of Alzheimer's Disease, 2017, 58, 55-67. Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiology of Disease, 2017, 108, 249-260. Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D. Scientific Reports,	2.1 1.2 2.1	39 89 64
11 12 13	Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease, 2018, 117, 42-61. Identification of Fungal Species in Brain Tissue from Alzheimer's Disease by Next-Generation Sequencing. Journal of Alzheimer's Disease, 2017, 58, 55-67. Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiology of Disease, 2017, 108, 249-260. Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D. Scientific Reports, 2017, 7, 43876. Polymicrobial Infections In Brain Tissue From Alzheimer's Disease Patients. Scientific Reports, 2017, 7,	2.1 1.2 2.1 1.6	39 89 64 30
11 12 13 14	Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease, 2018, 117, 42-61. Identification of Fungal Species in Brain Tissue from Alzheimer's Disease by Next-Generation Sequencing. Journal of Alzheimer's Disease, 2017, 58, 55-67. Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiology of Disease, 2017, 108, 249-260. Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D. Scientific Reports, 2017, 7, 43876. Polymicrobial Infections In Brain Tissue From Alzheimer's Disease Patients. Scientific Reports, 2017, 7, 5559. Fungal Enolase, β-Tubulin, and Chitin Are Detected in Brain Tissue from Alzheimer's Disease Patients.	2.1 1.2 2.1 1.6	3989643099

#	Article	IF	Citations
19	A Viral mRNA Motif at the $3\hat{a}\in^2$ -Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution. Scientific Reports, 2016, 6, 19217.	1.6	21
20	Different Brain Regions are Infected with Fungi in Alzheimer's Disease. Scientific Reports, 2015, 5, 15015.	1.6	210
21	Cerebrospinal Fluid from Alzheimer's Disease Patients Contains Fungal Proteins and DNA. Journal of Alzheimer's Disease, 2015, 47, 873-876.	1.2	30
22	Viroporins: Structures and functions beyond cell membrane permeabilization. Viruses, 2015, 7, 5169-5171.	1.5	20
23	Differential action of pateamine A on translation of genomic and subgenomic mRNAs from Sindbis virus. Virology, 2015, 484, 41-50.	1.1	19
24	Evidence for Fungal Infection in Cerebrospinal Fluid and Brain Tissue from Patients with Amyotrophic Lateral Sclerosis. International Journal of Biological Sciences, 2015, 11, 546-558.	2.6	87
25	Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm. Cellular Microbiology, 2015, 17, 520-541.	1.1	10
26	Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA. Rna, 2015, 21, 93-112.	1.6	15
27	Impact of Vesicular Stomatitis Virus M Proteins on Different Cellular Functions. PLoS ONE, 2015, 10, e0131137.	1.1	19
28	L protease from foot and mouth disease virus confers elF2â€independent translation for mRNAs bearing picornavirus IRES. FEBS Letters, 2014, 588, 4053-4059.	1.3	10
29	Direct Visualization of Fungal Infection in Brains from Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 613-624.	1.2	85
30	Fungal Infection in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 41, 301-311.	1.2	128
31	Alzheimer's disease and disseminated mycoses. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1125-1132.	1.3	59
32	Translation of viral mRNAs that do not require eIF4E is blocked by the inhibitor 4EGI-1. Virology, 2013, 444, 171-180.	1.1	6
33	Fungal infection in cerebrospinal fluid from some patients with multiple sclerosis. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 795-801.	1.3	33
34	Phosphorylation of eIF2α is responsible for the failure of the picornavirus internal ribosome entry site to direct translation from Sindbis virus replicons. Journal of General Virology, 2013, 94, 796-806.	1.3	11
35	Participation of eIF4F complex in Junin virus infection: blockage of eIF4E does not impair virus replication. Cellular Microbiology, 2013, 15, n/a-n/a.	1.1	22
36	Requirements for eIF4A and eIF2 during translation of Sindbis virus subgenomic mRNA in vertebrate and invertebrate host cells. Cellular Microbiology, 2013, 15, 823-840.	1,1	29

#	Article	IF	Citations
37	Poliovirus 2A Protease Triggers a Selective Nucleo-Cytoplasmic Redistribution of Splicing Factors to Regulate Alternative Pre-mRNA Splicing. PLoS ONE, 2013, 8, e73723.	1.1	34
38	A non-infectious cell-based phenotypic assay for the assessment of HIV-1 susceptibility to protease inhibitors. Journal of Antimicrobial Chemotherapy, 2012, 67, 32-38.	1.3	7
39	Membrane-Active Peptides Derived from Picornavirus 2B Viroporin. Current Protein and Peptide Science, 2012, 13, 632-643.	0.7	15
40	Viroporins: structure and biological functions. Nature Reviews Microbiology, 2012, 10, 563-574.	13.6	388
41	Translation Directed by Hepatitis A Virus IRES in the Absence of Active eIF4F Complex and eIF2. PLoS ONE, 2012, 7, e52065.	1.1	23
42	Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease. Biochemical and Biophysical Research Communications, 2011, 414, 142-147.	1.0	10
43	Translation of Viral mRNA without Active eIF2: The Case of Picornaviruses. PLoS ONE, 2011, 6, e22230.	1.1	24
44	Translation without eIF2 Promoted by Poliovirus 2A Protease. PLoS ONE, 2011, 6, e25699.	1.1	26
45	Functional impairment of eIF4A and eIF4G factors correlates with inhibition of influenza virus mRNA translation. Virology, 2011, 413, 93-102.	1.1	24
46	Fungal infection in a patient with multiple sclerosis. European Journal of Clinical Microbiology and Infectious Diseases, 2011 , 30 , $1173-1180$.	1.3	20
47	Membrane Integration of Poliovirus 2B Viroporin. Journal of Virology, 2011, 85, 11315-11324.	1.5	43
48	The Multifaceted Poliovirus 2A Protease: Regulation of Gene Expression by Picornavirus Proteases. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-23.	3.0	66
49	Association between multiple sclerosis and Candida species: evidence from a case-control study. European Journal of Clinical Microbiology and Infectious Diseases, 2010, 29, 1139-1145.	1.3	49
50	Cell permeabilization by poliovirus 2B viroporin triggers bystander permeabilization in neighbouring cells through a mechanism involving gap junctions. Cellular Microbiology, 2010, 12, 1144-1157.	1.1	14
51	Translation Driven by Picornavirus IRES Is Hampered from Sindbis Virus Replicons: Rescue by Poliovirus 2A Protease. Journal of Molecular Biology, 2010, 402, 101-117.	2.0	21
52	A peptide based on the pore-forming domain of pro-apoptotic poliovirus 2B viroporin targets mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 52-58.	1.4	12
53	Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells. PLoS ONE, 2009, 4, e4772.	1.1	44
54	HIV- 1 Protease Inhibits Cap- and Poly(A)-Dependent Translation upon eIF4GI and PABP Cleavage. PLoS ONE, 2009, 4, e7997.	1.1	59

#	Article	IF	CITATIONS
55	Regulation of Host Translational Machinery by African Swine Fever Virus. PLoS Pathogens, 2009, 5, e1000562.	2.1	69
56	RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. Journal of Cell Science, 2009, 122, 3799-3809.	1.2	83
57	Translation of mRNAs from Vesicular Stomatitis Virus and Vaccinia Virus Is Differentially Blocked in Cells with Depletion of eIF4GI and/or eIF4GII. Journal of Molecular Biology, 2009, 394, 506-521.	2.0	24
58	Functional and Structural Characterization of 2B Viroporin Membranolytic Domains. Biochemistry, 2008, 47, 10731-10739.	1.2	18
59	Fungal Infection in Patients with Serpiginous Choroiditis or Acute Zonal Occult Outer Retinopathy. Journal of Clinical Microbiology, 2008, 46, 130-135.	1.8	35
60	Fungal Infection in Patients with Multiple Sclerosis. The Open Mycology Journal, 2008, 2, 22-28.	0.8	12
61	Evolution of antibody response and fungal antigens in the serum of a patient infected with Candida famata. Journal of Medical Microbiology, 2007, 56, 571-578.	0.7	11
62	Viral Translation Is Coupled to Transcription in Sindbis Virus-Infected Cells. Journal of Virology, 2007, 81, 7061-7068.	1.5	36
63	Plasma Membrane-porating Domain in Poliovirus 2B Protein. A Short Peptide Mimics Viroporin Activity. Journal of Molecular Biology, 2007, 374, 951-964.	2.0	41
64	Attachment and entry of <i>Candida famata</i> in monocytes and epithelial cells. Microscopy Research and Technique, 2007, 70, 975-986.	1.2	23
65	Viroporins from RNA viruses induce caspase-dependent apoptosis. Cellular Microbiology, 2007, 10, 071027034427002-???.	1.1	91
66	Differential inhibition of cellular and Sindbis virus translation by brefeldin A. Virology, 2007, 363, 430-436.	1.1	10
67	Translation of Sindbis Virus 26S mRNA Does Not Require Intact Eukariotic Initiation Factor 4G. Journal of Molecular Biology, 2006, 355, 942-956.	2.0	45
68	HIV protease cleaves poly(A)-binding protein. Biochemical Journal, 2006, 396, 219-226.	1.7	85
69	Antiviral effect of the mammalian translation initiation factor $2\hat{l}\pm$ kinase GCN2 against RNA viruses. EMBO Journal, 2006, 25, 1730-1740.	3.5	170
70	Translational resistance of late alphavirus mRNA to eIF2Â phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes and Development, 2006, 20, 87-100.	2.7	176
71	Differential Cleavage of eIF4GI and eIF4GII in Mammalian Cells. Journal of Biological Chemistry, 2006, 281, 33206-33216.	1.6	38
72	Regulation of HIV-1 env mRNA translation by Rev protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1743, 169-175.	1.9	34

#	Article	IF	Citations
73	Involvement of HIV-1 protease in virus-induced cell killing. Antiviral Research, 2005, 66, 47-55.	1.9	23
74	Requirement of the vesicular system for membrane permeabilization by Sindbis virus. Virology, 2005, 332, 307-315.	1.1	33
75	Isolation of Candida famata from a Patient with Acute Zonal Occult Outer Retinopathy. Journal of Clinical Microbiology, 2005, 43, 635-640.	1.8	38
76	Viroporin activity of murine hepatitis virus E protein. FEBS Letters, 2005, 579, 3607-3612.	1.3	70
77	The Alphavirus 6K Protein., 2005,, 233-244.		4
78	Viral Proteins that Enhance Membrane Permeability. , 2005, , 79-90.		1
79	Membrane-permeabilizing motif in Semliki forest virus E1 glycoprotein. FEBS Letters, 2004, 576, 417-422.	1.3	10
80	Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Virus Research, 2004, 104, 39-49.	1.1	74
81	Individual Expression of Sindbis Virus Glycoproteins. E1 Alone Promotes Cell Fusion. Virology, 2003, 305, 463-472.	1.1	21
82	Cleavage of eIF4G by HIV-1 protease: effects on translation. FEBS Letters, 2003, 533, 89-94.	1.3	49
83	Viroporins. FEBS Letters, 2003, 552, 28-34.	1.3	324
84	Mechanisms of membrane permeabilization by picornavirus 2B viroporin. FEBS Letters, 2003, 552, 68-73.	1.3	64
85	The Eukaryotic Translation Initiation Factor 4GI Is Cleaved by Different Retroviral Proteases. Journal of Virology, 2003, 77, 12392-12400.	1.5	73
86	Interfacial Domains in Sindbis Virus 6K Protein. Journal of Biological Chemistry, 2003, 278, 2051-2057.	1.6	53
87	Cell Killing by HIV-1 Protease. Journal of Biological Chemistry, 2003, 278, 1086-1093.	1.6	68
88	Antiviral Activity of Seven Iridoids, Three Saikosaponins and One Phenylpropanoid Glycoside Extracted from Bupleurum rigidum and Scrophularia scorodonia. Planta Medica, 2002, 68, 106-110.	0.7	81
89	Viroporin-mediated Membrane Permeabilization. Journal of Biological Chemistry, 2002, 277, 40434-40441.	1.6	124
90	Entry of Poliovirus into Cells Is Blocked by Valinomycin and Concanamycin Aâ€. Biochemistry, 2001, 40, 3589-3600.	1.2	34

#	Article	IF	CITATIONS
91	Human Immunodeficiency Virus Type 1 VPU Protein Affects Sindbis Virus Glycoprotein Processing and Enhances Membrane Permeabilization. Virology, 2001, 279, 201-209.	1.1	29
92	HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12966-12971.	3.3	115
93	Sindbis Virus Variant with a Deletion in the 6K Gene Shows Defects in Glycoprotein Processing and Trafficking: Lack of Complementation by a Wild-Type 6K Gene in trans. Journal of Virology, 2001, 75, 7778-7784.	1.5	48
94	Antipoliovirus Flavonoids from <i>Psiadia Dentata</i> . Antiviral Chemistry and Chemotherapy, 2001, 12, 283-291.	0.3	37
95	Search for antiviral activity in higher plant extracts. Phytotherapy Research, 2000, 14, 604-607.	2.8	85
96	Poliovirus Induces Apoptosis in the Human U937 Promonocytic Cell Line. Virology, 2000, 272, 250-256.	1.1	41
97	Poliovirus Protease 3Cpro Kills Cells by Apoptosis. Virology, 2000, 266, 352-360.	1.1	116
98	A Stable HeLa Cell Line That Inducibly Expresses Poliovirus 2Apro: Effects on Cellular and Viral Gene Expression. Journal of Virology, 2000, 74, 2383-2392.	1.5	35
99	Eukaryotic Translation Initiation Factor 4GI Is a Cellular Target for NS1 Protein, a Translational Activator of Influenza Virus. Molecular and Cellular Biology, 2000, 20, 6259-6268.	1.1	181
100	The Amino-Terminal Nine Amino Acid Sequence of Poliovirus Capsid VP4 Protein Is Sufficient To Confer N-Myristoylation and Targeting to Detergent-Insoluble Membranesâ€. Biochemistry, 2000, 39, 1083-1090.	1.2	28
101	Nonradioactive Methods for the Detection of RNA-Protein Interaction. , 2000, , 783-791.		0
102	Antiviral activity of Bolivian plant extracts. General Pharmacology, 1999, 32, 499-503.	0.7	66
103	Cleavage of Eukaryotic Translation Initiation Factor 4G by Exogenously Added Hybrid Proteins Containing Poliovirus 2A ^{pro} in HeLa Cells: Effects on Gene Expression. Molecular and Cellular Biology, 1999, 19, 2445-2454.	1.1	50
104	Genetic Selection of Poliovirus 2A pro -Binding Peptides. Journal of Virology, 1999, 73, 814-818.	1.5	12
105	Poliovirus 2A proteinase cleaves directly the eIF-4G subunit of eIF-4F complex. FEBS Letters, 1998, 435, 79-83.	1.3	63
106	The Human Immunodeficiency Virus Type 1 Vpu Protein Enhances Membrane Permeability. Biochemistry, 1998, 37, 13710-13719.	1.2	64
107	Mutational Analysis of Poliovirus 2Apro. Journal of Biological Chemistry, 1998, 273, 27960-27967.	1.6	33
108	Effect of Nitric Oxide on Poliovirus Infection of Two Human Cell Lines. Journal of Virology, 1998, 72, 2538-2540.	1.5	32

#	Article	IF	CITATIONS
109	Identification of Regions of Poliovirus 2BC Protein That Are Involved in Cytotoxicity. Journal of Virology, 1998, 72, 3560-3570.	1.5	35
110	The Yeast Saccharomyces cerevisiae as a Genetic System for Obtaining Variants of Poliovirus Protease 2A. Journal of Biological Chemistry, 1997, 272, 12683-12691.	1.6	16
111	Cleavage of p220 by Purified Poliovirus 2Aproin Cell-Free Systems: Effects on Translation of Capped and Uncapped mRNAsâ€. Biochemistry, 1997, 36, 7802-7809.	1.2	23
112	Permeabilization of Mammalian Cells to Proteins: Poliovirus 2Aproas a Probe to Analyze Entry of Proteins into Cells. Experimental Cell Research, 1997, 232, 186-190.	1.2	0
113	The N-Terminal Arg-Rich Region of Human Immunodeficiency Virus Types 1 and 2 and Simian Immunodeficiency Virus Nef is Involved in RNA Binding. FEBS Journal, 1997, 246, 38-44.	0.2	10
114	Entry of Semliki Forest Virus into Cells: Effects of Concanamycin A and Nigericin on Viral Membrane Fusion and Infection. Virology, 1997, 227, 488-492.	1.1	34
115	Membrane Permeability Changes Induced inEscherichia coliby the SH Protein of Human Respiratory Syncytial Virus. Virology, 1997, 235, 342-351.	1.1	66
116	Antiviral activity of medicinal plant extracts. Phytotherapy Research, 1997, 11, 198-202.	2.8	36
117	Human Immunodeficiency Virus (HIV) Nef is an RNA Binding Protein in Cell-free Systems. Journal of Molecular Biology, 1996, 262, 640-651.	2.0	10
118	Screening for Membrane-Permeabilizing Mutants of the Poliovirus Protein 3AB. Journal of General Virology, 1996, 77, 2109-2119.	1.3	18
119	Membrane Permeabilization by Poliovirus Proteins 2B and 2BC. Journal of Biological Chemistry, 1996, 271, 23134-23137.	1.6	121
120	Biotin-Labeled Riboprobes to Study RNA-Binding Proteins. , 1996, , 215-225.		1
121	Effects of Poliovirus 2Apro on Vaccinia Virus Gene Expression. FEBS Journal, 1995, 234, 849-854.	0.2	22
122	Modification of Membrane Permeability by Animal Viruses. Advances in Virus Research, 1995, 45, 61-112.	0.9	200
123	Cloning and inducible synthesis of poliovirus non-structural proteins in Saccharomyces cerevisiae. Gene, 1995, 156, 19-25.	1.0	12
124	Induction of Membrane Proliferation by Poliovirus Proteins 2C and 2BC. Biochemical and Biophysical Research Communications, 1995, 206, 64-76.	1.0	135
125	Efficient Cleavage of p220 by Poliovirus 2Apro Expression in Mammalian Cells: Effects on Vaccina Virus. Biochemical and Biophysical Research Communications, 1995, 215, 928-936.	1.0	48
126	Mutations in the hydrophobic domain of poliovirus protein 3AB abrogate its permeabilizing activity. FEBS Letters, 1995, 367, 5-11.	1.3	27

#	Article	IF	CITATIONS
127	Poliovirus 2Aproexpression inhibits growth of yeast cells. FEBS Letters, 1995, 371, 4-8.	1.3	17
128	Expression of poliovirus 2Aproin mammalian cells: effects on translation. FEBS Letters, 1995, 377, 1-5.	1.3	22
129	Poliovirus Protein 2C Contains Two Regions Involved in RNA Binding Activity. Journal of Biological Chemistry, 1995, 270, 10105-10112.	1.6	119
130	Requirement for vacuolar proton-ATPase activity during entry of influenza virus into cells. Journal of Virology, 1995, 69, 2306-2312.	1.5	114
131	Membrane permeabilization by different regions of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. Journal of Virology, 1995, 69, 4095-4102.	1.5	51
132	Enhanced intracellular calcium concentration during poliovirus infection. Journal of Virology, 1995, 69, 5142-5146.	1.5	64
133	Involvement of the vacuolar H+-ATPase in animal virus entry. Journal of General Virology, 1994, 75, 2595-2606.	1.3	127
134	Action of brefeldin A on translation in Semliki Forest virus-infected HeLa cells and cells doubly infected with poliovirus. Journal of General Virology, 1994, 75, 2197-2203.	1.3	3
135	Picornavirus inhibitors. , 1994, 64, 215-290.		52
136	Concanamycin A: A Powerful Inhibitor of Enveloped Animal Virus Entry into Cells. Biochemical and Biophysical Research Communications, 1994, 201, 1270-1278.	1.0	23
137	Concanamycin A blocks influenza virus entry into cells under acidic conditions. FEBS Letters, 1994, 349, 327-330.	1.3	27
138	Entry of animal viruses and macromolecules into cells. FEBS Letters, 1994, 350, 151-154.	1.3	60
139	Hybrid proteins betweenPseudomonasexotoxin A and poliovirus protease 2Apro. FEBS Letters, 1994, 355, 45-48.	1.3	13
140	Influenza virus M2 protein modifies membrane permeability inE. colicells. FEBS Letters, 1994, 343, 242-246.	1.3	53
141	Activation of Phospholipase Activity during Semliki Forest Virus Infection. Virology, 1993, 194, 28-36.	1.1	17
142	Brefeldin A blocks protein glycosylation and RNA replication of vesicular stomatitis virus. FEBS Letters, 1993, 336, 496-500.	1.3	24
143	High level expression in Escherichia coli cells and purification of poliovirus protein 2Apro. Journal of General Virology, 1993, 74, 2645-2652.	1.3	17
144	Enhancement of phospholipase activity during poliovirus infection. Journal of General Virology, 1993, 74, 1063-1071.	1.3	21

#	Article	IF	CITATIONS
145	Modification of Membrane Permeability by Animal Viruses. , 1993, , 283-303.		22
146	Cloning and inducible synthesis of poliovirus nonstructural proteins. Gene, 1992, 117, 185-192.	1.0	19
147	Inducible expression of a toxic poliovirus membrane protein in Escherichia coli: Comparative studies using different expression systems based on T7 promoters. Biochemical and Biophysical Research Communications, 1992, 188, 972-981.	1.0	26
148	Involvement of membrane traffic in the replication of poliovirus genomes: Effects of brefeldin A. Virology, 1992, 191, 166-175.	1.1	133
149	Lack of direct correlation between p220 cleavage and the shut-off of host translation after poliovirus infection. Virology, 1992, 189, 178-186.	1.1	87
150	Gliotoxin: inhibitor of poliovirus RNA synthesis that blocks the viral RNA polymerase 3Dpol. Journal of Virology, 1992, 66, 1971-1976.	1.5	63
151	Cell type determines the relative proportions of (\hat{a}°) and $(+)$ strand RNA during poliovirus replication. Virus Research, 1991, 20, 23-29.	1.1	9
152	Cerulenin, an inhibitor of lipid synthesis, blocks vesicular stomatitis virus RNA replication. FEBS Letters, 1991, 280, 129-133.	1.3	15
153	Mechanism of inhibition of HSV-1 replication by tumor necrosis factor and interferon \hat{I}^3 . Virology, 1991, 180, 822-825.	1.1	49
154	Synthesis of Semliki Forest virus RNA requires continuous lipid synthesis. Virology, 1991, 183, 74-82.	1.1	48
155	Effects of fatty acids on lipid synthesis and viral RNA replication in poliovirus-infected cells. Virology, 1991, 185, 473-476.	1.1	29
156	Restriction of poliovirus RNA translation in a human monocytic cell line. FEBS Journal, 1989, 186, 577-582.	0.2	19
157	Post-translational modifications of poliovirus proteins. Biochemical and Biophysical Research Communications, 1989, 158, 263-271.	1.0	14
158	Modification of membrane permeability by animal viruses. , 1989, 40, 171-212.		70
159	Degradation of cellular proteins during poliovirus infection: studies by two-dimensional gel electrophoresis. Journal of Virology, 1989, 63, 4729-4735.	1.5	52
160	Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus Journal of Virology, 1989, 63, 1354-1359.	1.5	125
161	The heat-shock response in Trypanosoma cruzi. FEBS Journal, 1988, 172, 121-127.	0.2	22
162	Inhibition of natural killer cytotoxicity by extracellular ppp(A2′p5′)nA oligonucleotides. International Journal of Immunopharmacology, 1988, 10, 73-80.	1.1	2

#	Article	IF	CITATIONS
163	Exogenous phospholipase C permeabilizes mammalian cells to proteins. Experimental Cell Research, 1988, 177, 154-161.	1.2	18
164	Megalomycin C, a macrolide antibiotic that blocks protein glycosylation and shows antiviral activity. FEBS Letters, 1988, 231, 207-211.	1.3	18
165	Reovirus type 3 synthesizes proteins in interferon-treated Hela cells without reversing the antiviral state. Virology, 1988, 164, 420-426.	1.1	12
166	The P2 and P3 Regions of the Poliovirus Genome are Preferentially Translated at Alkaline pH in Infected HeLa Cells. Journal of General Virology, 1988, 69, 583-590.	1.3	5
167	Effects of Extracellular Cations on Translation in Poliovirus-infected Cells. Journal of General Virology, 1987, 68, 325-333.	1.3	21
168	Cation Content in Poliovirus-infected HeLa Cells. Journal of General Virology, 1987, 68, 335-342.	1.3	39
169	Proteins are cointernalized with virion particles during early infection. Virology, 1987, 160, 75-80.	1.1	52
170	Proteins synthesized in African swine fever virus-infected cells analyzed by two-dimensional gel electrophoresis. Virology, 1987, 160, 286-291.	1.1	23
171	Adenovirus infection reverses the antiviral state induced by human interferon. FEBS Letters, 1987, 214, 153-157.	1.3	7
172	Control of membrane permeability in animal cells by divalent cations. Experimental Cell Research, 1987, 169, 531-542.	1.2	15
173	Animal viruses promote the entry of polysaccharides with antiviral activity into cells. Biochemical and Biophysical Research Communications, 1987, 146, 1303-1310.	1.0	14
174	Baciphelacin: a new eukaryotic translation inhibitor. Biochimie, 1987, 69, 797-802.	1.3	7
175	Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrobial Agents and Chemotherapy, 1987, 31, 1388-1393.	1.4	169
176	Hexose-modified anti-viral analogues of uridine 5′-disphosphate glucose derivatives. European Journal of Medicinal Chemistry, 1987, 22, 59-65.	2.6	14
177	3-methylquercetin is a potent and selective inhibitor of poliovirus RNA synthesis. Virology, 1986, 152, 219-227.	1.1	86
178	External ATP permeabilizes transformed cells to macromolecules. Biochemical and Biophysical Research Communications, 1986, 134, 453-460.	1.0	9
179	The inhibition of nucleic acid synthesis in encephalomyocarditis virus-infected L929 cells: Effects on nucleoside transport. Molecular and Cellular Biochemistry, 1986, 71, 53-60.	1.4	5
180	Mildiomycin: A nucleoside antibiotic that inhibits protein synthesis Journal of Antibiotics, 1985, 38, 415-419.	1.0	38

#	Article	IF	Citations
181	Increased inhibition of cellular RNA synthesis by alpha-amanitin during entry of viruses into animal cells. FEMS Microbiology Letters, 1985, 26, 221-225.	0.7	3
182	The Regulation of Translation in Reovirus-infected Cells. Journal of General Virology, 1985, 66, 2161-2170.	1.3	13
183	Analogues of Uridinediphosphatehexoses. A New Type of Protein Glycosylation Inhibitors That Show Antiviral Activity. Nucleosides & Nucleotides, 1985, 4, 149-151.	0.5	0
184	Modification of membrane permeability during semliki forest virus infection. Virology, 1985, 146, 203-212.	1.1	49
185	Uridine 5'-diphosphate glucose analogs. Inhibitors of protein glycosylation that show antiviral activity. Journal of Medicinal Chemistry, 1985, 28, 40-46.	2.9	50
186	Synthesis and antiviral evaluation of nucleosides of 5-methylimidazole-4-carboxamide. Journal of Medicinal Chemistry, 1985, 28, 834-838.	2.9	11
187	Action of Human Lymphoblastoid Interferon on HeLa Cells Infected with RNA-containing Animal Viruses. Journal of General Virology, 1984, 65, 377-390.	1.3	28
188	Formation of Non-infective Herpesvirus Particles in Cultured Cells Treated with Human Interferon. Journal of General Virology, 1984, 65, 1069-1078.	1.3	53
189	Molecular bases for the action and selectivity of nucleoside antibiotics. Medicinal Research Reviews, 1984, 4, 471-512.	5.0	25
190	Action of oligomycin on cultured mammalian cells. Permeabilization to translation inhibitors. Molecular and Cellular Biochemistry, 1984, 61, 183-91.	1.4	8
191	Synthesis of heat-shock proteins in HeLa cells: Inhibition by virus infection. Virology, 1984, 137, 150-159.	1.1	60
192	Screening for new compounds with antiherpes activity. Antiviral Research, 1984, 4, 231-244.	1.9	41
193	Comparison of the antiviral action of different human interferons against DNA and RNA viruses. FEMS Microbiology Letters, 1984, 21, 105-111.	0.7	2
194	Do cells treated with human interferon survive virus infection?. FEMS Microbiology Letters, 1983, 20, 317-321.	0.7	0
195	Effect of interferon treatment on blockade of protein synthesis induced by poliovirus infection. FEBS Journal, 1983, 137, 623-629.	0.2	14
196	Cellular RNA is not degraded in interferon-treated HeLa cells after poliovirus infection. FEBS Letters, 1983, 160, 87-92.	1.3	11
197	Permeabilization of cells during animal virus infection. , 1983, 23, 109-145.		35
198	Modification of Membrane Permeability in Poliovirus-infected HeLa Cells: Effect of Guanidine. Journal of General Virology, 1983, 64, 787-793.	1.3	16

#	Article	IF	Citations
199	Do cells treated with human interferon survive virus infection?. FEMS Microbiology Letters, 1983, 20, 317-321.	0.7	0
200	Protein Synthesis in HeLa Cells Double-infected with Encephalomyocarditis Virus and Poliovirus. Journal of General Virology, 1982, 61, 15-24.	1.3	14
201	Translation of Capped Virus mRNA in Encephalomyocarditis Virus-infected Cells. Journal of General Virology, 1982, 60, 315-325.	1.3	5
202	Modification of membrane permeability in vaccinia virus-infected cells. Virology, 1982, 117, 62-69.	1.1	56
203	Relationship between Membrane Integrity and the Inhibition of Host Translation in Virus-Infected Mammalian Cells. Comparative Studies between Encephalomyocarditis Virus and Poliovirus. FEBS Journal, 1982, 127, 359-366.	0.2	45
204	Molecular Basis of the Permeabilization of Mammalian Cells by Ionophores. FEBS Journal, 1982, 127, 567-569.	0.2	33
205	Permeabilization of mammalian cells to proteins by the ionophore nigericin. FEBS Letters, 1981, 127, 112-114.	1.3	18
206	Modification of membrane permeability induced by animal viruses early in infection. Virology, 1981, 113, 623-629.	1.1	88
207	Selective inhibition of cellular protein synthesis by amphotericin B in EMC virus-infected cells. Virology, 1981, 114, 247-251.	1.1	10
208	Reversal by Hypotonic Medium of the Antiviral State Induced by Lymphoblastoid Interferon in Human HeLa Cells. Intervirology, 1981, 16, 106-113.	1.2	4
209	Thionins: Plant Peptides that Modify Membrane Permeability in Cultured Mammalian Cells. FEBS Journal, 1981, 116, 185-189.	0.2	124
210	Action of Nucleotide Derivatives on Translation in Encephalomyocarditis Virus-infected Mouse Cells. Journal of General Virology, 1981, 54, 125-134.	1.3	3
211	Protein Synthesis and Membrane Integrity in Interferon-treated HeLa Cells Infected with Encephalomyocarditis Virus. Journal of General Virology, 1981, 56, 153-162.	1.3	27
212	Relationship between Membrane Permeability and the Translation Capacity of Human HeLa Cells Studied by Means of the Ionophore Nigericin. FEBS Journal, 1981, 118, 289-294.	0.2	19
213	Reversion by hypotonic medium of the shutoff of protein synthesis induced by encephalomyocarditis virus. Journal of Virology, 1981, 37, 535-540.	1.5	47
214	Antibiotics that specifically block translation in virus-infected cells Journal of Antibiotics, 1980, 33, 441-446.	1.0	39
215	Action of Membrane-Active Compounds on Mammalian Cells. Permeabilization of Human Cells by lonophores to Inhibitors of Translation and Transcription. FEBS Journal, 1980, 109, 535-540.	0.2	41
216	Inhibition of animal virus production by means of translation inhibitors unable to penetrate normal cells. Virology, 1980, 106, 123-132.	1.1	49

#	Article	IF	CITATIONS
217	Selective inhibition of translation in transformed cells. FEBS Letters, 1980, 110, 341-343.	1.3	10
218	Molecular biology of animal virus infection. , 1980, 9, 311-355.		48
219	Viral infection permeabilizes mammalian cells to protein toxins. Cell, 1980, 20, 769-775.	13.5	197
220	Selective inhibition of protein synthesis in virus-infected mammalian cells. Journal of Virology, 1979, 29, 114-122.	1.5	87
221	The Development of New Antiviral Agents Based on Virus-Mediated Cell Modification. , 1979, , 623-631.		4
222	Membrane leakiness after viral infection and a new approach to the development of antiviral agents. Nature, 1978, 272, 694-699.	13.7	184
223	Inhibition, by selected antibiotics, of protein synthesis in cells growing in tissue cultures Journal of Antibiotics, 1978, 31, 598-602.	1.0	25
224	Enzymic and nonenzymic translocation by yeast polysomes. Site of action of a number of inhibitors. Biochemistry, 1977, 16, 4727-4730.	1.2	69
225	The inhibition of cell functions after viral infection A proposed general mechanism. FEBS Letters, 1977, 76, 11-15.	1.3	132
226	Do viruses use calcium ions to shut off host cell functions? (reply). Nature, 1977, 267, 376-376.	13.7	1
227	Site of action of ricin on the ribosome. Biochemistry, 1976, 15, 4364-4369.	1.2	30
228	Sodium ions and the shut-off of host cell protein synthesis by picornaviruses. Nature, 1976, 264, 807-809.	13.7	248
229	Specific Inhibition of Translocation by Tubulosine in Eukaryotic Polysomes. FEBS Journal, 1976, 64, 1-5.	0.2	24
230	Initiation of the Polypeptide Chain by Reticulocyte Cell-Free Systems. Survey of Different Inhibitors of Translation. FEBS Journal, 1976, 68, 355-364.	0.2	50
231	Antibiotics and compounds affecting translation by eukaryotic ribosomes. Specific enhancement of aminoacyl-tRNA binding by methylxanthines. Molecular and Cellular Biochemistry, 1976, 10, 97-122.	1.4	33
232	Binding of aminoacyl-tRNA to rat liver ribosomal proteins. Molecular Biology Reports, 1976, 2, 471-477.	1.0	8
233	Effects of Ricin on the Ribosomal Sites Involved in the Interaction of the Elongation Factors. FEBS Journal, 1975, 54, 499-503.	0.2	80
234	The Involvement of Sulphydryl Groups in the Peptidyl Transferase Centre of Eukaryotic Ribosomes. FEBS Journal, 1975, 50, 317-323.	0.2	16

#	Article	IF	CITATIONS
235	Ribosome Inactivation by the Toxic Lectins Abrin and Ricin. Kinetics of the Enzymic Activity of the Toxin A-Chains. FEBS Journal, 1975, 60, 281-288.	0.2	196
236	Narciclasine: an antitumour alkaloid which blocks peptide bond formation by eukaryotic ribosomes. FEBS Letters, 1975, 52, 236-239.	1.3	82
237	The enhancement of polypeptide synthesis in mammalian systems by methylxanthines. FEBS Letters, 1974, 45, 132-135.	1.3	11
238	Differences in eukaryotic ribosomes detected by the selective action of an antibiotic. Nucleic Acids and Protein Synthesis, 1973, 319, 209-215.	1.7	40
239	The trichodermin group of antibiotics, inhibitors of peptide bond formation by eukaryotic ribosomes. Nucleic Acids and Protein Synthesis, 1973, 312, 368-376.	1.7	92
240	Ribosomal sites involved in binding of aminoacyl-tRNA and EF 2. mode of action of fusidic acid. FEBS Letters, 1973, 32, 152-156.	1.3	21
241	SURVEY OF INHIBITORS IN DIFFERENT STEPS OF PROTEIN SYNTHESIS BY MAMMALIAN RIBOSOMES. Journal of Antibiotics, 1972, 25, 732-737.	1.0	30
242	Effects of Viral Replication on Cellular Membrane Metabolism and Function., 0,, 337-354.		6