Filippo De Angelis

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9016175/filippo-de-angelis-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

373	34,791	89	178
papers	citations	h-index	g-index
389	38,449 ext. citations	10.3	7.7
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
373	Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites. <i>Chemistry of Materials</i> , 2022 , 34, 1121-1131	9.6	2
372	Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2022 , 2103567	21.8	13
371	Reaction Mechanism of Photocatalytic Hydrogen Production at Water/Tin Halide Perovskite Interfaces. <i>ACS Energy Letters</i> , 2022 , 7, 1308-1315	20.1	5
370	Stability of Tin- versus Lead-Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces <i>Journal of Physical Chemistry Letters</i> , 2022 , 2321-2329	6.4	7
369	Single-crystalline TiO nanoparticles for stable and efficient perovskite modules <i>Nature Nanotechnology</i> , 2022 ,	28.7	13
368	Modelling the Interaction between Carboxylic Acids and Zinc Oxide: Insight into Degradation of ZnO Pigments. <i>Molecules</i> , 2022 , 27, 3362	4.8	0
367	First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient Approximation and Hybrid Functionals. <i>Journal of Physical Chemistry Letters</i> , 2021 , 11886-11893	6.4	4
366	Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. <i>Nature Communications</i> , 2021 , 12, 6394	17.4	23
365	Designing New Indene-Fullerene Derivatives as Electron-Transporting Materials for Flexible Perovskite Solar Cells <i>Journal of Physical Chemistry C</i> , 2021 , 125, 27344-27353	3.8	4
364	The Prospect of Lead-Free Perovskite Photovoltaics. ACS Energy Letters, 2021, 6, 1586-1587	20.1	13
363	Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. <i>Nature</i> , 2021 , 591, 72-77	50.4	172
362	Cation Engineering for Resonant Energy Level Alignment in Two-Dimensional Lead Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2528-2535	6.4	4
361	Energy vs Charge Transfer in Manganese-Doped Lead Halide Perovskites <i>ACS Energy Letters</i> , 2021 , 6, 1869-1878	20.1	12
360	Suppression of Tin Oxidation by 3D/2D Perovskite Interfacing. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 10901-10908	3.8	4
359	Surface Reconstruction Engineering with Synergistic Effect of Mixed-Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2021 , 31, 2102902	15.6	17
358	Energy Spotlight. ACS Energy Letters, 2021, 6, 2635-2637	20.1	
357	Observation of large Rashba spinBrbit coupling at room temperature in compositionally engineered perovskite single crystals and application in high performance photodetectors. <i>Materials Today</i> , 2021 , 46, 18-27	21.8	9

(2020-2021)

356	Strong Electron Localization in Tin Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 5339-5343	6.4	9
355	Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. <i>Nature Communications</i> , 2021 , 12, 3472	17.4	24
354	Real Space-Real Time Evolution of Excitonic States Based on the Bethe-Salpeter Equation Method. Journal of Physical Chemistry Letters, 2021 , 12, 7261-7269	6.4	2
353	Water-Stable DMASnBr Lead-Free Perovskite for Effective Solar-Driven Photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3611-3618	16.4	29
352	Tuning halide perovskite energy levels. Energy and Environmental Science, 2021, 14, 1429-1438	35.4	38
351	Water-Stable DMASnBr3 Lead-Free Perovskite for Effective Solar-Driven Photocatalysis. <i>Angewandte Chemie</i> , 2021 , 133, 3655-3662	3.6	2
350	The dependence of the spectroscopic properties of orcein dyes on solvent proticity: insights from theory and experiments. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 15329-15337	3.6	
349	Halide-driven formation of lead halide perovskites: insight from ab initio molecular dynamics simulations. <i>Materials Advances</i> , 2021 , 2, 3915-3926	3.3	5
348	Combination of a large cation and coordinating additive improves carrier transport properties in quasi-2D perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9175-9190	13	2
347	Decoding ultrafast polarization responses in lead halide perovskites by the two-dimensional optical Kerr effect. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	8
346	Composition-Dependent Struggle between lodine and Tin Chemistry at the Surface of Mixed Tin/Lead Perovskites. <i>ACS Energy Letters</i> , 2021 , 6, 969-976	20.1	12
345	Solvents for Processing Stable Tin Halide Perovskites. ACS Energy Letters, 2021, 6, 959-968	20.1	35
344	Halogen-Bonded Hole-Transport Material Suppresses Charge Recombination and Enhances Stability of Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2101553	21.8	13
343	Iodide vs Chloride: The Impact of Different Lead Halides on the Solution Chemistry of Perovskite Precursors. <i>ACS Applied Energy Materials</i> , 2021 , 4, 9827-9835	6.1	2
342	Experimental Strategy and Mechanistic View to Boost the Photocatalytic Activity of Cs3Bi2Br9 Lead-Free Perovskite Derivative by g-C3N4 Composite Engineering. <i>Advanced Functional Materials</i> , 2021 , 2104428	15.6	14
341	Role of spacer cations and structural distortion in two-dimensional germanium halide perovskites. Journal of Materials Chemistry C, 2021 , 9, 9899-9906	7.1	6
340	Electronic Properties and Carrier Trapping in Bi and Mn Co-doped CsPbCl Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 5482-5489	6.4	14
339	Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6882-6892	13	28

338	Evolution of Perovskite Solar Cells: Lessons Learned from Hybrid/Organic Photovoltaics. <i>ACS Energy Letters</i> , 2020 , 5, 935-937	20.1	О
337	Structural and Optical Properties of Solvated PbI in Butyrolactone: Insight into the Solution Chemistry of Lead Halide Perovskite Precursors. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 6139-6	145 ⁴	10
336	Transition Dipole Moments of = 1, 2, and 3 Perovskite Quantum Wells from the Optical Stark Effect and Many-Body Perturbation Theory. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 716-723	6.4	14
335	Tin versus Lead Redox Chemistry Modulates Charge Trapping and Self-Doping in Tin/Lead Iodide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3546-3556	6.4	64
334	The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2364-2374	16.4	65
333	Modulating Band Alignment in Mixed Dimensionality 3D/2D Perovskites by Surface Termination Ligand Engineering. <i>Chemistry of Materials</i> , 2020 , 32, 105-113	9.6	12
332	Polarons in Metal Halide Perovskites. <i>Advanced Energy Materials</i> , 2020 , 10, 1902748	21.8	47
331	Origin of pressure-induced band gap tuning in tin halide perovskites. <i>Materials Advances</i> , 2020 , 1, 2840	-2 84 5	10
330	Formation of Color Centers in Lead Iodide Perovskites: Self-Trapping and Defects in the Bulk and Surfaces. <i>Chemistry of Materials</i> , 2020 , 32, 6916-6924	9.6	15
329	Combined Computational and Experimental Investigation on the Nature of Hydrated Iodoplumbate Complexes: Insights into the Dual Role of Water in Perovskite Precursor Solutions. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 11481-11490	3.4	12
328	Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process. <i>Energy and Environmental Science</i> , 2020 , 13, 3093-3101	35.4	46
327	Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. <i>ACS Energy Letters</i> , 2020 , 5, 2787-2795	20.1	67
326	Critical Role of Protons for Emission Quenching of Indoline Dyes in Solution and on Semiconductor Surfaces. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 21346-21356	3.8	6
325	Outstanding Passivation Effect by a Mixed-Salt Interlayer with Internal Interactions in Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 3159-3167	20.1	22
324	New Fullerene Derivative as an n-Type Material for Highly Efficient, Flexible Perovskite Solar Cells of a p-i-n Configuration. <i>Advanced Functional Materials</i> , 2020 , 30, 2004357	15.6	25
323	A combined experimental and theoretical approach revealing a direct mechanism for bifunctional water splitting on doped copper phosphide. <i>Nanoscale</i> , 2020 , 12, 17769-17779	7.7	5
322	Ab Initio Modeling of Solar Cell Dye Sensitizers: The Hunt for Red Photons Continues. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 743-750	2.3	5
321	Controlling competing photochemical reactions stabilizes perovskite solar cells. <i>Nature Photonics</i> , 2019 , 13, 532-539	33.9	161

320	Stable Ligand Coordination at the Surface of Colloidal CsPbBr Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 3715-3726	6.4	49
319	Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films. Journal of the American Chemical Society, 2019, 141, 10812-10820	16.4	73
318	Rationalizing the Molecular Design of Hole-Selective Contacts to Improve Charge Extraction in Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1900990	21.8	37
317	Mo6S3Br6: An Anisotropic 2D Superatomic Semiconductor. <i>Advanced Functional Materials</i> , 2019 , 29, 1902951	15.6	6
316	Interface Electrostatics of Solid-State Dye-Sensitized Solar Cells: A Joint Drift-Diffusion and Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 14955-14963	3.8	5
315	Large polaron evidence in the ultrafast THz response of Lead-Halide Perovskites. <i>EPJ Web of Conferences</i> , 2019 , 205, 04019	0.3	
314	An Oxa[5]helicene-Based Racemic Semiconducting Glassy Film for Photothermally Stable Perovskite Solar Cells. <i>IScience</i> , 2019 , 15, 234-242	6.1	24
313	Ultrafast THz Probe of Photoinduced Polarons in Lead-Halide Perovskites. <i>Physical Review Letters</i> , 2019 , 122, 166601	7.4	56
312	Understanding the Solution Chemistry of Lead Halide Perovskites Precursors. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3400-3409	6.1	40
311	Synthesis, Properties, and Modeling of Cs1\(\mathbb{R}\)ExsnBr3 Solid Solution: A New Mixed-Cation Lead-Free All-Inorganic Perovskite System. <i>Chemistry of Materials</i> , 2019 , 31, 3527-3533	9.6	21
310	From Large to Small Polarons in Lead, Tin, and Mixed Lead-Tin Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1790-1798	6.4	49
309	Charge Carriers Are Not Affected by the Relatively Slow-Rotating Methylammonium Cations in Lead Halide Perovskite Thin Films. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 5128-5134	6.4	11
308	Energy Level Tuning at the MAPbI3 Perovskite/Contact Interface Using Chemical Treatment. <i>ACS Energy Letters</i> , 2019 , 4, 2181-2184	20.1	31
307	Defect Activity in Lead Halide Perovskites. <i>Advanced Materials</i> , 2019 , 31, e1901183	24	119
306	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13459-13467	16.4	41
305	Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. <i>Science</i> , 2019 , 365, 473-478	33.3	460
304	Hierarchical Coherent Phonons in a Superatomic Semiconductor. <i>Advanced Materials</i> , 2019 , 31, e19032	094	5
303	Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites: Competition between Polaron Stabilization and Cation Disorder. <i>ACS Energy Letters</i> , 2019 , 4, 2013-2020	20.1	32

302	The nature of the lead-iodine bond in PbI2: A case study for the modelling of lead halide perovskites. <i>Computational and Theoretical Chemistry</i> , 2019 , 1164, 112558	2	6
301	Electronic structure of MAPbI and MAPbCl: importance of band alignment. <i>Scientific Reports</i> , 2019 , 9, 15159	4.9	21
300	Solvent-Free Synthetic Route for Cerium(IV) Metal-Organic Frameworks with UiO-66 Architecture and Their Photocatalytic Applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 45031-45037	9.5	34
299	Introduction of a Bifunctional Cation Affords Perovskite Solar Cells Stable at Temperatures Exceeding 80 °C. ACS Energy Letters, 2019 , 4, 2989-2994	20.1	13
298	Band Gap Engineering in MASnBr and CsSnBr Perovskites: Mechanistic Insights through the Application of Pressure. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 7398-7405	6.4	31
297	Formation of Surface Defects Dominates Ion Migration in Lead-Halide Perovskites. <i>ACS Energy Letters</i> , 2019 , 4, 779-785	20.1	135
296	Influence of Disorder and Anharmonic Fluctuations on the Dynamical Rashba Effect in Purely Inorganic Lead-Halide Perovskites. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 291-298	3.8	21
295	Clues from defect photochemistry. <i>Nature Materials</i> , 2018 , 17, 383-384	27	28
294	Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 620-627	6.4	62
293	Modeling the Interaction of Molecular Iodine with MAPbI3: A Probe of Lead-Halide Perovskites Defect Chemistry. <i>ACS Energy Letters</i> , 2018 , 3, 447-451	20.1	66
292	Iodine chemistry determines the defect tolerance of lead-halide perovskites. <i>Energy and Environmental Science</i> , 2018 , 11, 702-713	35.4	353
291	Superatomic Two-Dimensional Semiconductor. <i>Nano Letters</i> , 2018 , 18, 1483-1488	11.5	25
290	Origin of low electronBole recombination rate in metal halide perovskites. <i>Energy and Environmental Science</i> , 2018 , 11, 101-105	35.4	86
289	First-Principles Modeling of Bismuth Doping in the MAPbI3 Perovskite. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14107-14112	3.8	41
288	Light-Induced Formation of Pb3+ Paramagnetic Species in Lead Halide Perovskites. <i>ACS Energy Letters</i> , 2018 , 3, 1840-1847	20.1	20
287	First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues. <i>ACS Energy Letters</i> , 2018 , 3, 2206-2222	20.1	152
286	Dye-Sensitized Photocatalytic Hydrogen Generation: Efficiency Enhancement by Organic Photosensitizer Coadsorbent Intermolecular Interaction. ACS Energy Letters, 2018, 3, 85-91	20.1	39
285	Dynamical Rashba Band Splitting in Hybrid Perovskites Modeled by Local Electric Fields. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 124-132	3.8	7

(2017-2018)

284	Quantitative structure-property relationship modeling of small organic molecules for solar cells applications. <i>Journal of Chemometrics</i> , 2018 , 32, e2957	1.6	5
283	Large electrostrictive response in lead halide perovskites. <i>Nature Materials</i> , 2018 , 17, 1020-1026	27	89
282	Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power Neuromorphic Computation. <i>Advanced Materials</i> , 2018 , 30, e1805454	24	91
281	Exploring the Limits of Three-Dimensional Perovskites: The Case of FAPb1\(\mathbb{\textbf{S}}\) SnxBr3. ACS Energy Letters, 2018 , 3, 1353-1359	20.1	23
280	Influence of Surface Termination on the Energy Level Alignment at the CH3NH3PbI3 Perovskite/C60 Interface. <i>Chemistry of Materials</i> , 2017 , 29, 958-968	9.6	119
279	Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. <i>Energy and Environmental Science</i> , 2017 , 10, 604-613	35.4	387
278	Nearly Monodisperse Insulator CsPbX (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX Nanocrystals. <i>Nano Letters</i> , 2017 , 17, 1924-1930	11.5	378
277	Riding the New Wave of Perovskites. ACS Energy Letters, 2017, 2, 922-923	20.1	13
276	Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films. <i>ACS Energy Letters</i> , 2017 , 2, 1416-1424	20.1	307
275	A ruthenium tetrazole complex-based high efficiency near infrared light electrochemical cell. <i>Chemical Communications</i> , 2017 , 53, 6211-6214	5.8	12
274	Rashba Band Splitting in Organohalide Lead Perovskites: Bulk and Surface Effects. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2247-2252	6.4	76
273	Long-Lived Photoinduced Polarons in Organohalide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3081-3086	6.4	45
272	Trends in Perovskite Solar Cells and Optoelectronics: Status of Research and Applications from the PSCO Conference. <i>ACS Energy Letters</i> , 2017 , 2, 857-861	20.1	21
271	Large-scale GW-BSE calculations with N3 scaling: Excitonic effects in dye-sensitized solar cells. <i>Physical Review B</i> , 2017 , 95,	3.3	22
270	Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. Journal of the American Chemical Society, 2017 , 139, 39-42	16.4	253
269	First principles modelling of perovskite solar cells based on TiO2 and Al2O3: stability and interfacial electronic structure. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2339-2345	13	28
268	A Conversation with Henry Snaith. ACS Energy Letters, 2017, 2, 2552-2554	20.1	1
267	Fluorescent Alloy CsPb Mn I Perovskite Nanocrystals with High Structural and Optical Stability. <i>ACS Energy Letters</i> , 2017 , 2, 2183-2186	20.1	224

266	Globularity-Selected Large Molecules for a New Generation of Multication Perovskites. <i>Advanced Materials</i> , 2017 , 29, 1702005	24	67
265	Large polarons in lead halide perovskites. <i>Science Advances</i> , 2017 , 3, e1701217	14.3	374
264	Mechanism of Reversible Trap Passivation by Molecular Oxygen in Lead-Halide Perovskites. <i>ACS Energy Letters</i> , 2017 , 2, 2794-2798	20.1	86
263	Perovskite Solar Cells on Their Way to the Market. ACS Energy Letters, 2017, 2, 2640-2641	20.1	5
262	A Conversation with Michael Grtzel. ACS Energy Letters, 2017, 2, 1674-1676	20.1	11
261	Chlorine Incorporation in the CHNHPbI Perovskite: Small Concentration, Big Effect. <i>Inorganic Chemistry</i> , 2017 , 56, 74-83	5.1	36
2 60	Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. <i>Energy and Environmental Science</i> , 2016 , 9, 155-	1 8 3 ⁴	355
259	Surface Polarization Drives Photoinduced Charge Separation at the P3HT/Water Interface. <i>ACS Energy Letters</i> , 2016 , 1, 454-463	20.1	39
258	Cobalt Polypyridyl Complexes as Transparent Solution-Processable Solid-State Charge Transport Materials. <i>Advanced Energy Materials</i> , 2016 , 6, 1600874	21.8	17
257	Ab Initio Simulation of the Absorption Spectra of Photoexcited Carriers in TiO2 Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3597-602	6.4	20
256	Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. <i>Energy and Environmental Science</i> , 2016 , 9, 3180-3187	35.4	243
255	A molecularly engineered hole-transporting material for efficient perovskite solar cells. <i>Nature Energy</i> , 2016 , 1,	62.3	693
254	Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes. <i>Inorganic Chemistry</i> , 2016 , 55, 6653-9	5.1	65
253	Benchmarking DFT and semi-empirical methods for a reliable and cost-efficient computational screening of benzofulvene derivatives as donor materials for small-molecule organic solar cells. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 074005	1.8	27
252	Theoretical Investigation of Adsorption, Dynamics, Self-Aggregation, and Spectroscopic Properties of the D102 Indoline Dye on an Anatase (101) Substrate. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 278	7 ³ 2 ⁸ 796	; ²⁰
251	New terpyridine-based ruthenium complexes for dye sensitized solar cells applications. <i>Inorganica Chimica Acta</i> , 2016 , 442, 158-166	2.7	16
250	Structural and electronic properties of dye-sensitized TiO2 for solar cell applications: from single molecules to self-assembled monolayers. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4346-4373	7.1	41
249	Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolaver-Level Thickness Control. <i>Journal of the American Chemical Society.</i> 2016 , 138, 1010-6	16.4	615

248	Chapter 8:First Principles Modeling of Perovskite Solar Cells: Interplay of Structural, Electronic and Dynamical Effects. <i>RSC Energy and Environment Series</i> , 2016 , 234-296	0.6	2
247	Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15821-	1 582 4	141
246	Enhanced TiO2/MAPbI3 Electronic Coupling by Interface Modification with PbI2. <i>Chemistry of Materials</i> , 2016 , 28, 3612-3615	9.6	54
245	Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics. <i>ACS Energy Letters</i> , 2016 , 1, 182-188	20.1	143
244	Optical absorption spectrum of the N3 solar cell sensitizer by second-order multireference perturbation theory. <i>Theoretical Chemistry Accounts</i> , 2016 , 135, 1	1.9	10
243	Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1638-45	6.4	220
242	High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using FluoreneDithiophene Derivatives as Hole-Transporting Materials. <i>ACS Energy Letters</i> , 2016 , 1, 107-112	20.1	92
241	Electronic and optical properties of MAPbX perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27158-27164	3.6	108
240	Vibrational Response of Methylammonium Lead Iodide: From Cation Dynamics to Phonon-Phonon Interactions. <i>ChemSusChem</i> , 2016 , 9, 2994-3004	8.3	38
239	Permanent excimer superstructures by supramolecular networking of metal quantum clusters. <i>Science</i> , 2016 , 353, 571-5	33.3	43
238	First-Principles Modeling of Organohalide Thin Films and Interfaces 2016 , 19-52		4
237	The effect of TiO2 surface on the electron injection efficiency in PbS quantum dot solar cells: a first-principles study. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 6076-86	3.6	18
236	Structural and electronic properties of photoexcited TiO2 nanoparticles from first principles. Journal of Chemical Theory and Computation, 2015 , 11, 635-45	6.4	28
235	Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 9394-409	3.6	116
234	Quantitative structureproperty relationship modeling of ruthenium sensitizers for solar cells applications: novel tools for designing promising candidates. <i>RSC Advances</i> , 2015 , 5, 23865-23873	3.7	13
233	Science in the Age of Digital Networking. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2900-1	6.4	
232	Monitoring the intramolecular charge transfer process in the Z907 solar cell sensitizer: a transient Vis and IR spectroscopy and ab initio investigation. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 21594	- 8 64	10
231	Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water. <i>Chemistry of Materials</i> , 2015 , 27, 4885-4892	9.6	323

230	Thermal Fluctuations on FEster Resonance Energy Transfer in Dyadic Solar Cell Sensitizers: A Combined Ab Initio Molecular Dynamics and TDDFT Investigation. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 16490-16499	3.8	6
229	Energy Level Alignment at Titanium Oxide Dye Interfaces: Implications for Electron Injection and Light Harvesting. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9899-9909	3.8	25
228	Modeling Mesoporous Nanoparticulated TiO2 Films through Nanopolyhedra Random Packing. Journal of Physical Chemistry C, 2015 , 119, 10716-10726	3.8	3
227	First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5798-809	16.4	50
226	Carbazole-based sensitizers for potential application to dye sensitized solar cells. <i>Journal of Chemical Sciences</i> , 2015 , 127, 383-394	1.8	15
225	First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 12739-12748	3.8	19
224	Photoinduced Energy Shift in Quantum-Dot-Sensitized TiO2: A First-Principles Analysis. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1423-9	6.4	10
223	Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. <i>Advanced Energy Materials</i> , 2015 , 5, 1500477	21.8	1386
222	Ligand Induced Spectral Changes in CdSe Quantum Dots. <i>ACS Applied Materials & Dots amp; Interfaces</i> , 2015 , 7, 19736-45	9.5	46
221	CHNHPbI perovskite single crystals: surface photophysics and their interaction with the environment. <i>Chemical Science</i> , 2015 , 6, 7305-7310	9.4	171
220	Water Oxidation by the [Co4O4(OAc)4(py)4](+) Cubium is Initiated by OH(-) Addition. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15460-8	16.4	58
219	Effect of the anchoring group in the performance of carbazole-phenothiazine dyads for dye-sensitized solar cells. <i>Dyes and Pigments</i> , 2015 , 113, 536-545	4.6	27
218	Triphenylamine-functionalized corrole sensitizers for solar-cell applications. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 194-202	1.6	25
217	New thiocyanate-free ruthenium(II) sensitizers with different pyrid-2-yl tetrazolate ligands for dye-sensitized solar cells. <i>Dalton Transactions</i> , 2015 , 44, 11788-96	4.3	24
216	Photoinduced Reversible Structural Transformations in Free-Standing CH3NH3PbI3 Perovskite Films. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2332-8	6.4	172
215	Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO. <i>Chemistry of Materials</i> , 2015 , 27, 4229-4236	9.6	448
214	Ferroelectric Polarization of CH3NH3PbI3: A Detailed Study Based on Density Functional Theory and Symmetry Mode Analysis. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2223-31	6.4	151
213	Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy and Environmental Science, 2015, 8, 2118-2127	35.4	1003

212	Benzodithiophene based organic dyes for DSSC: Effect of alkyl chain substitution on dye efficiency. <i>Dyes and Pigments</i> , 2015 , 121, 351-362	4.6	19
211	Electronic and optical properties of mixed SnPb organohalide perovskites: a first principles investigation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9208-9215	13	156
2 10	Functionalized Ruthenium Dialkynyl Complexes with High Second-Order Nonlinear Optical Properties and Good Potential as Dye Sensitizers for Solar Cells. <i>Organometallics</i> , 2015 , 34, 94-104	3.8	25
209	Novel heteroleptic Ru(II) complexes: synthesis, characterization and application in dye-sensitized solar cells. <i>Dalton Transactions</i> , 2015 , 44, 5369-78	4.3	10
208	Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. <i>Scientific Reports</i> , 2014 , 4, 4467	4.9	910
207	Effect of Structural Dynamics on the Opto-Electronic Properties of Bare and Hydrated ZnS QDs. Journal of Physical Chemistry C, 2014 , 118, 3274-3284	3.8	11
206	Physicochemical Investigation of the Panchromatic Effect on 野ubstituted ZnII Porphyrinates for DSSCs: The Role of the Bridge between a Dithienylethylene Unit and the Porphyrinic Ring. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 7307-7320	3.8	25
205	Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. <i>Nano Letters</i> , 2014 , 14, 2168-74	11.5	182
204	Time-Dependent Density Functional Theory Modeling of Spin Drbit Coupling in Ruthenium and Osmium Solar Cell Sensitizers. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 17067-17078	3.8	40
203	Titanium dioxide nanomaterials for photovoltaic applications. <i>Chemical Reviews</i> , 2014 , 114, 10095-130	68.1	567
202	Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. <i>Accounts of Chemical Research</i> , 2014 , 47, 3349-60	24.3	104
201	Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. <i>Nano Letters</i> , 2014 , 14, 3608-16	11.5	837
2 00	Engineering of Ru(II) dyes for interfacial and light-harvesting optimization. <i>Dalton Transactions</i> , 2014 , 43, 2726-32	4.3	18
199	The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. Journal of Physical Chemistry Letters, 2014 , 5, 279-84	6.4	476
198	Computational modeling of single- versus double-anchoring modes in di-branched organic sensitizers on TiO2 surfaces: structural and electronic properties. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 4709-19	3.6	26
197	Impact of Spin-Orbit Coupling on Photocurrent Generation in Ruthenium Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2014 , 5, 375-80	6.4	27
196	Stability of ruthenium/organic dye co-sensitized solar cells: a joint experimental and computational investigation. <i>RSC Advances</i> , 2014 , 4, 57620-57628	3.7	14
195	Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation. <i>Chemistry of Materials</i> , 2014 , 26, 6557-6569	9.6	252

194	The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3836-42	6.4	218
193	First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2619-25	6.4	228
192	An integrated experimental and theoretical approach to the spectroscopy of organic-dye-sensitized TiOIheterointerfaces: disentangling the effects of aggregation, solvation, and surface protonation. <i>ChemPhysChem</i> , 2014 , 15, 1116-25	3.2	24
191	Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2662-9	6.4	277
190	Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3532-8	6.4	160
189	Thiocyanate-free ruthenium(II) sensitizers for dye-sensitized solar cells based on the cobalt redox couple. <i>ChemSusChem</i> , 2014 , 7, 2930-8	8.3	18
188	Effect of Molecular Fluctuations on Hole Diffusion within Dye Monolayers. <i>Chemistry of Materials</i> , 2014 , 26, 4731-4740	9.6	20
187	DFT/TDDFT study of the adsorption of N3 and N719 dyes on ZnO(101 0) surfaces. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 5885-93	2.8	18
186	Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. <i>Chemical Reviews</i> , 2014 , 114, 9708-53	68.1	310
185	Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16137-44	3.6	195
184	Shape and morphology effects on the electronic structure of TiO(2) nanostructures: from nanocrystals to nanorods. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 2471-8	9.5	20
183	Unexpectedly high second-order nonlinear optical properties of simple Ru and Pt alkynyl complexes as an analytical springboard for NLO-active polymer films. <i>Chemical Communications</i> , 2014 , 50, 7986-9	5.8	38
182	Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 4014-24	6.4	34
181	Electronic and optical properties of dye-sensitized TiOIInterfaces. <i>Topics in Current Chemistry</i> , 2014 , 347, 1-45		16
180	Corrole dyes for dye-sensitized solar cells: The crucial role of the dye/semiconductor energy level alignment. <i>Computational and Theoretical Chemistry</i> , 2014 , 1030, 59-66	2	38
179	Synthesis by MW-assisted direct arylation, side-arms driven self-assembly and functional properties of 9,10-dithienylanthracene orthogonal materials. <i>Tetrahedron</i> , 2014 , 70, 6222-6228	2.4	11
178	Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization. <i>Thin Solid Films</i> , 2014 , 560, 86-93	2.2	7
177	Effect of Sensitizer Structure and TiO2 Protonation on Charge Generation in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16927-16940	3.8	29

176	Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency. <i>Topics in Current Chemistry</i> , 2014 , 352, 151-236		18	
175	MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1667, 41		2	
174	Charge-displacement analysis for excited states. <i>Journal of Chemical Physics</i> , 2014 , 140, 054110	3.9	24	
173	Alignment of energy levels in dye/semiconductor interfaces by GW calculations: Effects due to coadsorption of solvent molecules. <i>Physical Review B</i> , 2014 , 90,	3.3	11	
172	Pyridine-N-Oxide 2-Carboxylic Acid: An Acceptor Group for Organic Sensitizers with Enhanced Anchoring Stability in Dye-Sensitized Solar Cells. <i>Asian Journal of Organic Chemistry</i> , 2014 , 3, 140-152	3	15	
171	Investigating Charge Dynamics in Halide Perovskite Sensitized Mesostructured Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1667, 7		2	
170	A computational approach to the electronic, optical and acidBase properties of Ru(II) dyes for photoelectrochemical solar cells applications. <i>Polyhedron</i> , 2014 , 82, 88-103	2.7	2	
169	A new terpyridine cobalt complex redox shuttle for dye-sensitized solar cells. <i>Inorganica Chimica Acta</i> , 2013 , 406, 106-112	2.7	18	
168	Near-infrared absorbing unsymmetrical Zn(II) phthalocyanine for dye-sensitized solar cells. <i>Inorganica Chimica Acta</i> , 2013 , 407, 289-296	2.7	19	
167	Boron Functionalization and Unusual B© Bond Activation in Rhodium(III) and Iridium(III) Complexes with Diphenylbis(pyrazolylborate) Ligands (Ph2Bp). <i>Organometallics</i> , 2013 , 32, 3895-3902	3.8	7	
166	Tetraaryl ZnII porphyrinates substituted at pyrrolic positions as sensitizers in dye-sensitized solar cells: a comparison with meso-disubstituted push-pull Zn(II) porphyrinates. <i>Chemistry - A European Journal</i> , 2013 , 19, 10723-40	4.8	55	
165	A simple synthetic route to obtain pure trans-ruthenium(II) complexes for dye-sensitized solar cell applications. <i>ChemSusChem</i> , 2013 , 6, 2170-80	8.3	24	
164	Computational Modeling of Isoindigo-Based Polymers Used in Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17940-17954	3.8	27	
163	Synthesis, size-dependent optoelectronic and charge transport properties of thieno(bis)imide end-substituted molecular semiconductors. <i>Organic Electronics</i> , 2013 , 14, 3089-3097	3.5	25	
162	Novel carbazole-phenothiazine dyads for dye-sensitized solar cells: a combined experimental and theoretical study. <i>ACS Applied Materials & English (Materials & English)</i> 1, 5, 9635-47	9.5	85	
161	Excipance Expression of the second se	5.8	25	
160	Modeling the effect of ionic additives on the optical and electronic properties of a dye-sensitized TiO2 heterointerface: absorption, charge injection and aggregation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14675	13	36	
159	High Open-Circuit Voltages: Evidence for a Sensitizer-Induced TiO2 Conduction Band Shift in Ru(II)-Dye Sensitized Solar Cells. <i>Chemistry of Materials</i> , 2013 , 25, 4497-4502	9.6	37	

158	MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. <i>Chemistry of Materials</i> , 2013 , 25, 4613-4618	9.6	658
157	Thiocyanate-free ruthenium(II) sensitizer with a pyrid-2-yltetrazolate ligand for dye-sensitized solar cells. <i>Inorganic Chemistry</i> , 2013 , 52, 10723-5	5.1	43
156	Modeling Excited States and Alignment of Energy Levels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 3685-3700	3.8	117
155	Metal-Free Benzodithiophene-Containing Organic Dyes for Dye-Sensitized Solar Cells. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 84-94	3.2	34
154	Assessment of new gem-silanediols as suitable sensitizers for dye-sensitized solar cells. <i>Journal of Organometallic Chemistry</i> , 2013 , 723, 198-206	2.3	11
153	Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective. Journal of Physical Chemistry Letters, 2013, 4, 956-74	6.4	71
152	Molecular Tailoring of New Thieno(bis)imide-Based Semiconductors for Single Layer Ambipolar Light Emitting Transistors. <i>Chemistry of Materials</i> , 2013 , 25, 668-676	9.6	44
151	Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. <i>Energy and Environmental Science</i> , 2013 , 6, 183-	1 3 54	217
150	Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering. <i>Energy and Environmental Science</i> , 2013 , 6, 1221	35.4	68
149	Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 3874-3887	3.8	76
148	Sterically demanded unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. <i>Dyes and Pigments</i> , 2013 , 98, 518-529	4.6	34
147	Optical Properties and Aggregation of Phenothiazine-Based Dye-Sensitizers for Solar Cells Applications: A Combined Experimental and Computational Investigation. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 9613-9622	3.8	69
146	Engineering of thiocyanate-free Ru(II) sensitizers for high efficiency dye-sensitized solar cells. <i>Chemical Science</i> , 2013 , 4, 2423	9.4	65
145	An investigation on the second order nonlinear optical response of tris-cyclometallated Ir(III) complexes with variously substituted 2-phenylpyridines. <i>Dalton Transactions</i> , 2013 , 42, 155-9	4.3	17
144	First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2013 , 117, 13902-13913	3.8	767
143	Role of hot singlet excited states in charge generation at the black dye/TiO2 interface. <i>ACS Applied Materials & </i>	9.5	23
142	Tuning the dipolar second-order nonlinear optical properties of cyclometalated platinum(II) complexes with tridentate N^C^N binding ligands. <i>Chemistry - A European Journal</i> , 2013 , 19, 9875-83	4.8	41
141	Everything you always wanted to know about black dye (but were afraid to ask): a DFT/TDDFT investigation. <i>Chimia</i> , 2013 , 67, 121-8	1.3	18

140	Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19438-53	16.4	185
139	GrapheneBrganic hybrids as processable, tunable platforms for pH-dependent photoemission, obtained by a new modular approach. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18237		27
138	Modulating the electronic properties of asymmetric pushbull and symmetric Zn(II)-diarylporphyrinates with para substituted phenylethynyl moieties in 5,15 meso positions: A combined electrochemical and spectroscopic investigation. <i>Electrochimica Acta</i> , 2012 , 85, 509-523	6.7	18
137	Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: adsorption modes, electronic structure and implication for electron injection/recombination. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 920-8	3.6	165
136	New [(D-terpyridine)-Ru-(D or A-terpyridine)][4-EtPhCO2]2 complexes (D = electron donor group; A = electron acceptor group) as active second-order non linear optical chromophores. <i>Dalton Transactions</i> , 2012 , 41, 6707-14	4.3	16
135	Quaterpyridine ligands for panchromatic Ru(II) dye sensitizers. <i>Journal of Organic Chemistry</i> , 2012 , 77, 7945-56	4.2	27
134	Optoelectronic properties of (ZnO)60 isomers. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14293-8	3.6	13
133	Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 15963-74	3.6	133
132	First-Principles Computational Modeling of Fluorescence Resonance Energy Transfer in Co-Sensitized Dye Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2146-53	6.4	30
131	Acid-base properties of the N3 ruthenium(II) solar cell sensitizer: a combined experimental and computational analysis. <i>Dalton Transactions</i> , 2012 , 41, 11841-8	4.3	27
130	Selective TDDFT with automatic removal of ghost transitions: application to a perylene-dye-sensitized solar cell model. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8608-19	3.6	11
129	Measured binding coefficients for iodine and ruthenium dyes; implications for recombination in dye sensitised solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 15421-8	3.6	41
128	A first-principles study of IIIVI (II = Zn; VI = O, S, Se, Te) semiconductor nanostructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21453		38
127	A vinylene-linked benzo[1,2-b:4,5-b']dithiophene-2,1,3-benzothiadiazole low-bandgap polymer. Journal of Polymer Science Part A, 2012 , 50, 2829-2840	2.5	20
126	Solvent Effects on the Adsorption Geometry and Electronic Structure of Dye-Sensitized TiO2: A First-Principles Investigation. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5932-5940	3.8	74
125	Influence of Donor Groups of Organic D A Dyes on Open-Circuit Voltage in Solid-State Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 1572-1578	3.8	59
124	Modeling Ruthenium-Dye-Sensitized TiO2 Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18124-18131	3.8	52
123	Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. <i>RSC Advances</i> , 2012 , 2, 6209	3.7	18

122	Joint electrical, photophysical and computational studies on D-IA dye sensitized solar cells: the impacts of dithiophene rigidification. <i>Chemical Science</i> , 2012 , 3, 976	9.4	137
121	Computational Investigation of Dyelbdine Interactions in Organic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 5965-5973	3.8	82
120	Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 10662-8	3.6	20
119	DFT/TDDFT investigation of the stepwise deprotonation in tetracycline: pKa assignment and UVIIis spectroscopy. <i>Theoretical Chemistry Accounts</i> , 2012 , 131, 1	1.9	13
118	Computational Investigations on Organic Sensitizers for Dye-Sensitized Solar Cell. <i>Current Organic Synthesis</i> , 2012 , 9, 215-232	1.9	18
117	Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene Etonjugated quaterpyridine for dye-sensitized solar cells. <i>Dalton Transactions</i> , 2011 , 40, 234-42	4.3	52
116	Optical properties of ZnO nanostructures: a hybrid DFT/TDDFT investigation. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 467-75	3.6	49
115	Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor: Econjugated organic dyes in mesoscopic TiO2 sensitized solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 1820	35.4	137
114	A combined molecular dynamics and computational spectroscopy study of a dye-sensitized solar cell. <i>New Journal of Physics</i> , 2011 , 13, 085013	2.9	13
113	A Multitechnique Physicochemical Investigation of Various Factors Controlling the Photoaction Spectra and of Some Aspects of the Electron Transfer for a Series of Push B ull Zn(II) Porphyrins Acting as Dyes in DSSCs. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23170-23182	3.8	41
112	Modeling ZnS and ZnO Nanostructures: Structural, Electronic, and Optical Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 25219-25226	3.8	51
111	DFT Investigations of Formic Acid Adsorption on Single-Wall TiO2 Nanotubes: Effect of the Surface Curvature. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2179-2186	3.8	45
110	A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO. <i>Coordination Chemistry Reviews</i> , 2011 , 255, 2704-2726	23.2	143
109	Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8825-8831	3.8	200
108	Simulating Dye-Sensitized TiO2 Heterointerfaces in Explicit Solvent: Absorption Spectra, Energy Levels, and Dye Desorption. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 813-817	6.4	92
107	Cyclometalated iridium(III) complexes based on phenyl-imidazole ligand. <i>Inorganic Chemistry</i> , 2011 , 50, 451-62	5.1	87
106	Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells. <i>Dyes and Pigments</i> , 2011 , 90, 304-310	4.6	119
105	pH-Sensitive Bis(2,2?:6?,2"-terpyridine)ruthenium(II) Complexes 🖟 DFT/TDDFT Investigation of Their Spectroscopic Properties. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 1605-1613	2.3	12

104	Photophysical and Electrochemical Properties of Thiophene-Based 2-Arylpyridines. <i>European Journal of Organic Chemistry</i> , 2011 , 2011, 5587-5598	3.2	16
103	Bis-Donor B is-Acceptor Tribranched Organic Sensitizers for Dye-Sensitized Solar Cells. <i>European Journal of Organic Chemistry</i> , 2011 , 2011, 6195-6205	3.2	48
102	DFT Investigation of Ligand-Based Reduction of CO2to CO on an Anionic Niobium Nitride Complex: Reaction Mechanism and Role of the Na+Counterion. <i>Organometallics</i> , 2011 , 30, 4838-4846	3.8	10
101	Computational Spectroscopy Characterization of the Species Involved in Dye Oxidation and Regeneration Processes in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18863-	1 8 872	22
100	Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23126-23133	3.8	115
99	Computational Modeling of Stark Effects in Organic Dye-Sensitized TiO2 Heterointerfaces. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1261-7	6.4	53
98	Organic dyes incorporating low-band-gap chromophores based on Extended benzothiadiazole for dye-sensitized solar cells. <i>Dyes and Pigments</i> , 2011 , 91, 192-198	4.6	142
97	Organic Dyes Containing A Triple Bond Spacer for Dye Sensitized Solar Cells: A Combined Experimental and Theoretical Investigation. <i>Current Organic Chemistry</i> , 2011 , 15, 3535-3543	1.7	8
96	Fluorinated beta-diketonate diglyme lanthanide complexes as new second-order nonlinear optical chromophores: the role of f electrons in the dipolar and octupolar contribution to quadratic hyperpolarizability. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4966-70	16.4	48
95	First-Principles Modeling of the Adsorption Geometry and Electronic Structure of Ru(II) Dyes on Extended TiO2 Substrates for Dye-Sensitized Solar Cell Applications. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6054-6061	3.8	192
94	PyridineEDOT HeteroaryleneVinylene DonorAcceptor Polymers?. <i>Macromolecules</i> , 2010 , 43, 9698-9713	5.5	22
93	Highly stable 7-N,N-dibutylamino-2-azaphenanthrene and 8-N,N-dibutylamino-2-azachrysene as a new class of second order NLO-active chromophores. <i>Chemical Communications</i> , 2010 , 46, 8374-6	5.8	8
92	An inconvenient influence of iridium(III) isomer on OLED efficiency. <i>Dalton Transactions</i> , 2010 , 39, 8914-	-84.3	34
91	Luminescent cyclometallated Ir(III) and Pt(II) complexes with beta-diketonate ligands as highly active second-order NLO chromophores. <i>Chemical Communications</i> , 2010 , 46, 2414-6	5.8	56
90	A Computational Investigation of Organic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, and Open Issues. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7205-7212	3.8	302
89	Ab Initio Determination of Ground and Excited State Oxidation Potentials of Organic Chromophores for Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 22742-22750	3.8	117
88	Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation. <i>ACS Nano</i> , 2010 , 4, 556-62	16.7	229
87	A Joint Experimental and Theoretical Investigation on Nonlinear Optical (NLO) Properties of a New Class of Push P ull Spirobifluorene Compounds. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 4004	-4016	28

86	Cyclometalated Ir(III) complexes with substituted 1,10-phenanthrolines: a new class of efficient cationic organometallic second-order NLO chromophores. <i>Chemistry - A European Journal</i> , 2010 , 16, 48	14 ⁻² 5	60
85	Towards molecular design rationalization in branched multi-thiophene semiconductors: the 2-thienyl-persubstituted alpha-oligothiophenes. <i>Chemistry - A European Journal</i> , 2010 , 16, 9086-98	4.8	18
84	DFT studies of telimination reactions in water solution with different bases: Theory vs experiment. <i>Computational and Theoretical Chemistry</i> , 2010 , 940, 103-114		3
83	Direct vs. indirect injection mechanisms in perylene dye-sensitized solar cells: A DFT/TDDFT investigation. <i>Chemical Physics Letters</i> , 2010 , 493, 323-327	2.5	110
82	Cr(CO)3-activated Diels-Alder reaction on single-wall carbon nanotubes: a DFT investigation. <i>Chemistry - A European Journal</i> , 2009 , 15, 4182-9	4.8	7
81	Oligothiophenes nano-organized on a cyclotetrasiloxane scaffold as a model of a silica-bound monolayer: evidence for intramolecular excimer formation. <i>Chemistry - A European Journal</i> , 2009 , 15, 12791-8	4.8	16
80	Panchromatic cross-substituted squaraines for dye-sensitized solar cell applications. <i>ChemSusChem</i> , 2009 , 2, 621-4	8.3	49
79	Merging of E2 and E1cb Reaction Mechanisms: A Combined Theoretical and Experimental Study. <i>European Journal of Organic Chemistry</i> , 2009 , 2009, 5501-5504	3.2	10
78	Spectroscopic properties of cyclometallated iridium complexes by TDDFT. <i>Computational and Theoretical Chemistry</i> , 2009 , 914, 74-86		30
77	Theoretical design of phosphorescence parameters for organic electro-luminescence devices based on iridium complexes. <i>Chemical Physics</i> , 2009 , 358, 245-257	2.3	72
76	Cationic cyclometallated iridium(III) complexes with substituted 1,10-phenanthrolines: the role of the cyclometallated moiety on this new class of complexes with interesting luminescent and second order non linear optical properties. <i>Journal of Materials Science: Materials in Electronics</i> ,	2.1	16
75	2009 , 20, 460-464 Time-dependent density functional theory study of squaraine dye-sensitized solar cells. <i>Chemical Physics Letters</i> , 2009 , 475, 49-53	2.5	79
74	Di-branched di-anchoring organic dyes for dye-sensitized solar cells. <i>Energy and Environmental Science</i> , 2009 , 2, 1094	35.4	175
73	An EFISH, Theoretical, and PGSE NMR Investigation on the Relevant Role of Aggregation on the Second Order Response in CHCl3 of the PushBull Chromophores [5-[[4?-(Dimethylamino)phenyl]ethynyl]-15-[(4??-nitrophenyl)ethynyl]-10,20-diphenylporphyrinate]	3.8	20
72	White-light phosphorescence emission from a single molecule: application to OLED. <i>Chemical Communications</i> , 2009 , 4672-4	5.8	85
71	Second harmonic generation in nonsymmetrical squaraines: tuning of the directional charge transfer character in highly delocalized dyes. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8190		42
70	High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. <i>Nano Letters</i> , 2009 , 9, 2487-92	11.5	220
69	Absorption and emission of the apigenin and luteolin flavonoids: a TDDFT investigation. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 15118-26	2.8	70

(2007-2008)

68	Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6259-66	16.4	595
67	Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. <i>Chemical Communications</i> , 2008 , 5318-20	5.8	101
66	Synthesis, characterization, and DFT/TD-DFT calculations of highly phosphorescent blue light-emitting anionic iridium complexes. <i>Inorganic Chemistry</i> , 2008 , 47, 980-9	5.1	212
65	Ab initio prediction of the emission color in phosphorescent iridium(III) complexes for OLEDs. Journal of Physical Chemistry B, 2008 , 112, 13181-3	3.4	32
64	Theoretical Investigations of the Effects of J-Aggregation on the Linear and Nonlinear Optical Properties of E-4-(4-Dimethylaminostyryl)-1-methylpyridinium [DAMS+]. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 1213-1226	3.8	20
63	Theoretical investigation of the structural and electronic properties of luteolin, apigenin and their deprotonated species. <i>Computational and Theoretical Chemistry</i> , 2008 , 868, 12-21		14
62	Spider-like oligothiophenes. Chemistry - A European Journal, 2008, 14, 459-71	4.8	45
61	Heteroaromatic DonorAcceptor EConjugated 2,2?-Bipyridines. <i>European Journal of Organic Chemistry</i> , 2008 , 2008, 5047-5054	3.2	15
60	A DFT investigation of base-catalyzed elimination reactions in water solution for systems activated by the pyridine ring: Theory vs. experiment. <i>Chemical Physics Letters</i> , 2008 , 460, 100-107	2.5	5
59	AcidBase chemistry of luteolin and its methyl-ether derivatives: A DFT and ab initio investigation. <i>Chemical Physics Letters</i> , 2008 , 462, 313-317	2.5	12
58	The role of 5-R-1,10-phenanthroline (R=CH3, NO2) on the emission properties and second-order NLO response of cationic Ir(III) organometallic chromophores. <i>Inorganica Chimica Acta</i> , 2008 , 361, 4070-	4076	39
57	Alignment of the dye's molecular levels with the TiO(2) band edges in dye-sensitized solar cells: a DFT-TDDFT study. <i>Nanotechnology</i> , 2008 , 19, 424002	3.4	230
56	Full Quantum Mechanical Investigation of the Unimolecular versus Bimolecular Acetylene to Vinylidene Rearrangement in the Prototype trans-Cl-Rh(Pi-Pr3)2 Complex. <i>Organometallics</i> , 2007 , 26, 5285-5288	3.8	31
55	Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. <i>Nano Letters</i> , 2007 , 7, 3189-95	11.5	325
54	Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. <i>Journal of the American Chemical Society</i> , 2007 , 129, 10320-1	16.4	466
53	Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14156-7	16.4	220
52	Controlling phosphorescence color and quantum yields in cationic iridium complexes: a combined experimental and theoretical study. <i>Inorganic Chemistry</i> , 2007 , 46, 5989-6001	5.1	226
51	Time-dependent and coupled-perturbed DFT and HF investigations on the absorption spectrum and non-linear optical properties of pushBull M(II)Borphyrin complexes (M=Zn, Cu, Ni). <i>Chemical Physics Letters</i> , 2007 , 447, 10-15	2.5	32

50	An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. <i>Theoretical Chemistry Accounts</i> , 2007 , 117, 1093-1104	1.9	34
49	The role of substituents on functionalized 1,10-phenanthroline in controlling the emission properties of cationic iridium(III) complexes of interest for electroluminescent devices. <i>Inorganic Chemistry</i> , 2007 , 46, 8533-47	5.1	160
48	Cyclometallated iridium(III) complexes with substituted 1,10-phenanthrolines: a new class of highly active organometallic second order NLO-phores with excellent transparency with respect to second harmonic emission. <i>Chemical Communications</i> , 2007 , 4116-8	5.8	79
47	Electronic structure and reactivity of isomeric oxo-Mn(V) porphyrins: effects of spin-state crossing and pKa modulation. <i>Inorganic Chemistry</i> , 2006 , 45, 4268-76	5.1	101
46	Tuning the photoinduced O2-evolving reactivity of Mn4O47+, Mn4O46+, and Mn4O3(OH)6+ manganese-oxo cubane complexes. <i>Inorganic Chemistry</i> , 2006 , 45, 189-95	5.1	54
45	A time-dependent density functional theory investigation on the nature of the electronic transitions involved in the nonlinear optical response of [Ru(CF3CO2)3T] (T = 4'-(C6H4-p-NBu2)-2,2':6',2"-terpyridine). <i>Dalton Transactions</i> , 2006 , 852-9	4.3	18
44	Electronic transitions involved in the absorption spectrum and dual luminescence of tetranuclear cubane [Cu4I4(pyridine)4] cluster: a density functional theory/time-dependent density functional theory investigation. <i>Inorganic Chemistry</i> , 2006 , 45, 10576-84	5.1	200
43	Efficient blue light-emitting diodes based on a classical pushpullarchitecture molecule 4,4?-di-(2-(2,5-dimethoxyphenyl)ethenyl)-2,2?-bipyridine. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4468-	-4474	33
42	Interplay of stereoelectronic and enviromental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach. Journal of the American Chemical Society, 2006, 128, 4338-47	16.4	68
41	Ab initio molecular dynamics simulations of elimination reactions in water solution: exploring the borderline region between the E1cb and E2 reaction mechanisms. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11014-9	3.4	15
40	Synthesis, characterization, and DFT-TDDFT computational study of a ruthenium complex containing a functionalized tetradentate ligand. <i>Inorganic Chemistry</i> , 2006 , 45, 4642-53	5.1	147
39	Molecular engineering of organic sensitizers for solar cell applications. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16701-7	16.4	728
38	Ab initio molecular dynamics simulations of organometallic reactivity. <i>Coordination Chemistry Reviews</i> , 2006 , 250, 1497-1513	23.2	24
37	Photophysical properties of [Ru(phen)2(dppz)]2+ intercalated into DNA: an integrated Car-Parrinello and TDDFT study. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14144-5	16.4	109
36	Quantum chemical evaluation of protein control over heme ligation: CO/O2 discrimination in myoglobin. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3065-70	3.4	49
35	Intramolecular Coupling of 2 -Iminoacyls on Zirconium Bis(aryloxides) and Calix[4]arenes: Revised Mechanism by DFT Calculations and Car B arrinello Molecular Dynamics Simulations. <i>Organometallics</i> , 2005 , 24, 1867-1875	3.8	9
34	Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16835-47	16.4	2503
33	Terpyridine Zn(II), Ru(III), and Ir(III) complexes: the relevant role of the nature of the metal ion and of the ancillary ligands on the second-order nonlinear response of terpyridines carrying electron	5.1	79

(2003-2005)

Solvent effects on the UV (n> pi*) and NMR (13C and 17O) spectra of acetone in aqueous solution. An integrated car-parrinello and DFT/PCM approach. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 445-53	3.4	101
Evidence of a borderline region between E1cb and E2 elimination reaction mechanisms: a combined experimental and theoretical study of systems activated by the pyridine ring. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15151-60	16.4	47
The unexpected similar second-order NLO response for nearly planar and largely twisted push-pull stilbazole chromophores: EFISH and theoretical TD-DFT evidence. <i>Chemical Communications</i> , 2005 , 5405	5.57 ⁸	12
Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4?-COO₱,2?-bpy)2(X)2]4¶X = NCS, Cl) dyes in water solution. <i>Chemical Physics Letters</i> , 2005 , 415, 115-120	2.5	86
Mechanism of the initial conformational transition of a photomodulable peptide. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6077-81	16.4	13
Penning ionization of N2O molecules by He*(2(3,1)S) and Ne*(3P2,0) metastable atoms: theoretical considerations about the intermolecular interactions. <i>Journal of Chemical Physics</i> , 2005 , 122, 164308	3.9	34
Penning ionization of N2O molecules by He*(2(3,1)S) and Ne*(3P2,0) metastable atoms: a crossed beam study. <i>Journal of Chemical Physics</i> , 2005 , 122, 164307	3.9	35
Calculation of near-edge x-ray-absorption fine structure at finite temperatures: spectral signatures of hydrogen bond breaking in liquid water. <i>Journal of Chemical Physics</i> , 2004 , 120, 8632-7	3.9	137
Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4?-COOH-2,2?-bpy)2(NCS)2] in water solution: influence of the pH. <i>Chemical Physics Letters</i> , 2004 , 389, 204-208	2.5	118
Hyperfine coupling constants of dimethyl nitroxide in aqueous solution: CarBarrinello molecular dynamics and discrete-continuum approaches. <i>Chemical Physics Letters</i> , 2004 , 395, 120-126	2.5	43
A TDDFT study of the ruthenium(II) polyazaaromatic complex [Ru(dppz)(phen)2]2+ in solution. <i>Chemical Physics Letters</i> , 2004 , 396, 43-48	2.5	81
Acetylene to vinylidene rearrangements on electron rich d6 metal centers: a density functional study. <i>Dalton Transactions</i> , 2004 , 3225-30	4.3	30
A combined computational and experimental study of polynuclear Ru-TPPZ complexes: insight into the electronic and optical properties of coordination polymers. <i>Journal of the American Chemical Society</i> , 2004 , 126, 9715-23	16.4	78
Coordination and Haptotropic Rearrangement of Cr(CO)3on (n,0) Nanotube Sidewalls: A Dynamical Density Functional Study. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 5243-5249	3.4	24
Time-dependent DFT study of [Fe(CN)6]4- sensitization of TiO2 nanoparticles. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15024-5	16.4	210
Role of ligand bending in the photodissociation of O2 vs CO-heme: a time-dependent density functional study. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15710-1	16.4	38
The migratory insertion of carbon monoxide and methyl isocyanide into zirconiumbarbon and titaniumbarbon bonds anchored to a calix[4]arene moiety: a dynamical density functional study. <i>Theoretical Chemistry Accounts</i> , 2003 , 110, 196-204	1.9	9
A density functional study on the Pt(0)-catalysed hydrosilylation of ethylene. <i>Computational and Theoretical Chemistry</i> , 2003 , 623, 277-288		11
	solution. An integrated car-parrinello and DFT/PCM approach. Journal of Physical Chemistry B, 2005, 109, 445-53 Evidence of a borderline region between E1cb and E2 elimination reaction mechanisms: a combined experimental and theoretical study of systems activated by the pyridine ring. Journal of the American Chemical Society, 2005, 127, 15151-60 The unexpected similar second-order NLO response for nearly planar and largely twisted push-pull stilbazole chromophores: EFISH and theoretical TD-DFT evidence. Chemical Communications, 2005, 540: Time dependent density functional theory study of the absorption spectrum of the [Ru(4,47-CODB_27-by)2(X)2]4[X = NCS, Cl) dyes in water solution. Chemical Physics Letters, 2005, 415, 115-120 Mechanism of the initial conformational transition of a photomodulable peptide. Angewandte Chemie - International Edition, 2005, 44, 6077-81 Penning ionization of N2O molecules by He*(2(3,1)S) and Ne*(3P2,0) metastable atoms: theoretical considerations about the intermolecular interactions. Journal of Chemical Physics, 2005, 122, 164308 Penning ionization of N2O molecules by He*(2(3,1)S) and Ne*(3P2,0) metastable atoms: a crossed beam study. Journal of Chemical Physics, 2005, 122, 164307 Calculation of near-edge x-ray-absorption fine structure at finite temperatures: spectral signatures of hydrogen bond breaking in liquid water. Journal of Chemical Physics, 2004, 120, 8632-7 Time-dependent density functional theory study of the absorption spectrum of [Ru(4,47-COOH-2,27-bpy)2(NCS)2] in water solution: influence of the pH. Chemical Physics Letters, 2004, 389, 204-208 Hyperfine coupling constants of dimethyl nitroxide in aqueous solution: CarBarrinello molecular dynamics and discrete-continuum approaches. Chemical Physics Letters, 2004, 395, 120-126 A TDDFT study of the ruthenium(II) polyazaaromatic complex [Ru(dpp2)(phen)2]2+ in solution. Chemical Physics Letters, 2004, 396, 43-48 Acetylene to vinylidene rearrangements on electron rich d6 metal centers: a density functional study.	solution. An integrated car-parrinello and DFT/PCM approach. <i>Journal of Physical Chemistry B</i> , 2005, 34-109, 445-53 Evidence of a borderline region between E1cb and E2 elimination reaction mechanisms: a combined experimental and theoretical study of systems activated by the pyridine ring. <i>Journal of the American Chemical Society</i> , 2005, 127, 1515-60 The unexpected similar second-order NLO response for nearly planar and largely twisted push-pull stilbazole chromophores: EFISH and theoretical TD-DFT evidence. <i>Chemical Communications</i> , 2005, 5405-58 Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4?-COO!2,2?-bpy)2(X)2]4[IX = NCS, C]) dyes in water solution. <i>Chemical Physics Letters</i> , 2005, 1415, 115-120 Mechanism of the initial conformational transition of a photomodulable peptide. <i>Angewandte Chemie - International Edition</i> , 2005, 44, 6077-81 Penning ionization of N2O molecules by He*(2(3,1)S) and Ne*(3P2,0) metastable atoms: theoretical considerations about the intermolecular interactions. <i>Journal of Chemical Physics</i> , 2005, 122, 164307 Penning ionization of N2O molecules by He*(2(3,1)S) and Ne*(3P2,0) metastable atoms: a crossed beam study. <i>Journal of Chemical Physics</i> , 2005, 122, 164307 Calculation of near-edge x-ray-absorption fine structure at finite temperatures: spectral signatures of hydrogen bond breaking in liquid water. <i>Journal of Chemical Physics</i> , 2004, 120, 8632-7 Time-dependent density functional theory study of the absorption spectrum of Ru(4,4?-COOH-2,2?-bpy)2(NCS)2] in water solution: influence of the pH. <i>Chemical Physics Letters</i> , 2004, 399, 204-208 Hyperfine coupling constants of dimethyl nitroxide in aqueous solution: CarBarrinello molecular dynamics and discrete-continuum approaches. <i>Chemical Physics Letters</i> , 2004, 395, 120-126 A TDDFT study of the ruthenium(II) polyazaaromatic complex [Ru(dppz)(phen)2]2+ in solution. <i>Chemical Physics Letters</i> , 2004, 396, 43-48 Acetylene to vinylidene rearrangements on electron rich d6 metal center

14	Absorption spectrum and solvatochromism of the [Ru(4,4'-COOH-2,2'-bpy)2(NCS)2] molecular dye by time dependent density functional theory. <i>Journal of the American Chemical Society</i> , 2003 , 125, 438	1-7 ^{6.4}	289
13	Theoretical Analysis on Mechanisms Implied in Hybrid Integrated Circuit Building. <i>Lecture Notes in Computer Science</i> , 2003 , 331-340	0.9	1
12	Oxidative addition of SiH4 to Pt(PH3)2: a dynamical density functional study. <i>Chemical Physics Letters</i> , 2002 , 364, 87-92	2.5	8
11	Four- and Five-Coordinate CO Insertion in the Copolymerization of Carbon Monoxide and Olefins Catalyzed by Diphosphine Nickel(II) Complexes: A Dynamical Density Functional Study. <i>Organometallics</i> , 2002 , 21, 2036-2040	3.8	15
10	Dynamical Density Functional Study of Acetylene to Vinylidene Isomerization in (Cp)(CO)2Mn(HC?CH). <i>Organometallics</i> , 2002 , 21, 2715-2723	3.8	43
9	A Dynamic Density Functional Study of the Stepwise Migratory Insertion of Isocyanides into Zirconium arrows and Anchored to a Calix [4] arene Moiety. <i>Organometallics</i> , 2002 , 21, 4090-4098	3.8	6
8	Density Functional Study of Alkyne to Vinylidene Rearrangements in [(Cp)(PMe3)2Ru(HC?CR)]+ (R = H, Me). <i>Organometallics</i> , 2002 , 21, 5944-5950	3.8	46
7	Reconstruction of frozen-core all-electron orbitals from pseudo-orbitals. <i>Journal of Chemical Physics</i> , 2001 , 115, 5791-5795	3.9	30
6	A dynamical density functional study of CO insertion into the metalllkyl bond in Ti(Cp)2(CH3)2. <i>Dalton Transactions RSC</i> , 2001 , 1023-1028		9
5	Glutathione Transferase: A First-Principles Study of the Active Site. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11963-11970	16.4	5
4	Theoretical study of acetylide complexes of early transition metals. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 3841-3844		7
3	Enhanced Stability of MAPbI3 Perovskite Films with Zirconium Phosphate-Phosphonomethylglycine Nanosheets as Additive. <i>Advanced Materials Interfaces</i> ,2101888	4.6	
2	Defect activity in metal halide perovskites with wide and narrow bandgap. Nature Reviews Materials,	73.3	26
1	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells.	35.4	21