Filippo De Angelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005, 127, 16835-16847.	13.7	2,645
2	Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 2015, 5, 1500477.	19.5	1,788
3	Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy and Environmental Science, 2015, 8, 2118-2127.	30.8	1,278
4	Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports, 2014, 4, 4467.	3.3	1,093
5	Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano Letters, 2014, 14, 3608-3616.	9.1	1,033
6	First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2013, 117, 13902-13913.	3.1	861
7	A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 2016, 1, .	39.5	816
8	Molecular Engineering of Organic Sensitizers for Solar Cell Applications. Journal of the American Chemical Society, 2006, 128, 16701-16707.	13.7	760
9	Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. Journal of the American Chemical Society, 2016, 138, 1010-1016.	13.7	747
10	MAPbI _{3-x} Cl _{<i>x</i>} Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials, 2013, 25, 4613-4618.	6.7	732
11	Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365, 473-478.	12.6	723
12	Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews, 2014, 114, 10095-10130.	47.7	669
13	Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications. Journal of the American Chemical Society, 2008, 130, 6259-6266.	13.7	625
14	The Raman Spectrum of the CH ₃ NH ₃ PbI ₃ Hybrid Perovskite: Interplay of Theory and Experiment. Journal of Physical Chemistry Letters, 2014, 5, 279-284.	4.6	555
15	Origin of the Thermal Instability in CH ₃ NH ₃ PbI ₃ Thin Films Deposited on ZnO. Chemistry of Materials, 2015, 27, 4229-4236.	6.7	548
16	Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy and Environmental Science, 2017, 10, 604-613.	30.8	525
17	Large polarons in lead halide perovskites. Science Advances, 2017, 3, e1701217.	10.3	515
18	Efficient Far Red Sensitization of Nanocrystalline TiO ₂ Films by an Unsymmetrical Squaraine Dye. Journal of the American Chemical Society, 2007, 129, 10320-10321.	13.7	497

#	Article	IF	CITATIONS
19	Nearly Monodisperse Insulator Cs ₄ PbX ₆ (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX ₃ Nanocrystals. Nano Letters, 2017, 17, 1924-1930.	9.1	488
20	lodine chemistry determines the defect tolerance of lead-halide perovskites. Energy and Environmental Science, 2018, 11, 702-713.	30.8	480
21	Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72-77.	27.8	471
22	Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films. ACS Energy Letters, 2017, 2, 1416-1424.	17.4	437
23	Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy and Environmental Science, 2016, 9, 155-163.	30.8	423
24	<i>Ab Initio</i> Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water. Chemistry of Materials, 2015, 27, 4885-4892.	6.7	414
25	Theoretical Studies on Anatase and Less Common TiO ₂ Phases: Bulk, Surfaces, and Nanomaterials. Chemical Reviews, 2014, 114, 9708-9753.	47.7	367
26	Influence of the Sensitizer Adsorption Mode on the Open-Circuit Potential of Dye-Sensitized Solar Cells. Nano Letters, 2007, 7, 3189-3195.	9.1	340
27	Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. Journal of the American Chemical Society, 2017, 139, 39-42.	13.7	336
28	A Computational Investigation of Organic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, and Open Issues. Journal of Physical Chemistry C, 2010, 114, 7205-7212.	3.1	328
29	Fluorescent Alloy CsPb _{<i>x</i>} Mn _{1–<i>x</i>} I ₃ Perovskite Nanocrystals with High Structural and Optical Stability. ACS Energy Letters, 2017, 2, 2183-2186.	17.4	305
30	Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy and Environmental Science, 2016, 9, 3180-3187.	30.8	302
31	Extremely Slow Photoconductivity Response of CH ₃ NH ₃ PbI ₃ Perovskites Suggesting Structural Changes under Working Conditions. Journal of Physical Chemistry Letters, 2014, 5, 2662-2669.	4.6	301
32	Absorption Spectrum and Solvatochromism of the [Ru(4,4â€~-COOH-2,2â€~-bpy)2(NCS)2] Molecular Dye by Time Dependent Density Functional Theory. Journal of the American Chemical Society, 2003, 125, 4381-4387.	13.7	299
33	Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation. Chemistry of Materials, 2014, 26, 6557-6569.	6.7	286
34	Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?. Journal of Physical Chemistry Letters, 2016, 7, 1638-1645.	4.6	278
35	Controlling competing photochemical reactions stabilizes perovskite solar cells. Nature Photonics, 2019, 13, 532-539.	31.4	273
36	Alignment of the dye's molecular levels with the TiO ₂ band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology, 2008, 19, 424002.	2.6	263

#	Article	IF	CITATIONS
37	Aggregation of Organic Dyes on TiO ₂ in Dye-Sensitized Solar Cells Models: An <i>ab Initio</i> Investigation. ACS Nano, 2010, 4, 556-562.	14.6	249
38	Influence of the dye molecular structure on the TiO ₂ conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. Energy and Environmental Science, 2013, 6, 183-193.	30.8	247
39	First-Principles Investigation of the TiO ₂ /Organohalide Perovskites Interface: The Role of Interfacial Chlorine. Journal of Physical Chemistry Letters, 2014, 5, 2619-2625.	4.6	247
40	The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics. Journal of Physical Chemistry Letters, 2014, 5, 3836-3842.	4.6	238
41	Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes:Â A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2007, 46, 5989-6001.	4.0	237
42	Time-Dependent DFT Study of [Fe(CN)6]4-Sensitization of TiO2Nanoparticles. Journal of the American Chemical Society, 2004, 126, 15024-15025.	13.7	228
43	Time-Dependent Density Functional Theory Investigations on the Excited States of Ru(II)-Dye-Sensitized TiO ₂ Nanoparticles:  The Role of Sensitizer Protonation. Journal of the American Chemical Society, 2007, 129, 14156-14157.	13.7	228
44	High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Letters, 2009, 9, 2487-2492.	9.1	228
45	First-Principles Modeling of the Adsorption Geometry and Electronic Structure of Ru(II) Dyes on Extended TiO ₂ Substrates for Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2010, 114, 6054-6061.	3.1	224
46	Synthesis, Characterization, and DFT/TD-DFT Calculations of Highly Phosphorescent Blue Light-Emitting Anionic Iridium Complexes. Inorganic Chemistry, 2008, 47, 980-989.	4.0	222
47	Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO ₂ in Dye-Sensitized Solar Cell Models. Journal of Physical Chemistry C, 2011, 115, 8825-8831.	3.1	222
48	Formation of Surface Defects Dominates Ion Migration in Lead-Halide Perovskites. ACS Energy Letters, 2019, 4, 779-785.	17.4	219
49	Electronic Transitions Involved in the Absorption Spectrum and Dual Luminescence of Tetranuclear Cubane [Cu4I4(pyridine)4] Cluster:Â a Density Functional Theory/Time-Dependent Density Functional Theory Investigation. Inorganic Chemistry, 2006, 45, 10576-10584.	4.0	218
50	Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Physical Chemistry Chemical Physics, 2014, 16, 16137-16144.	2.8	211
51	Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study. Journal of the American Chemical Society, 2012, 134, 19438-19453.	13.7	204
52	First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues. ACS Energy Letters, 2018, 3, 2206-2222.	17.4	202
53	Stark Effect in Perovskite/TiO ₂ Solar Cells: Evidence of Local Interfacial Order. Nano Letters, 2014, 14, 2168-2174.	9.1	200
54	CH ₃ NH ₃ PbI ₃ perovskite single crystals: surface photophysics and their interaction with the environment. Chemical Science, 2015, 6, 7305-7310.	7.4	192

#	Article	IF	CITATIONS
55	Defect Activity in Lead Halide Perovskites. Advanced Materials, 2019, 31, e1901183.	21.0	191
56	Photoinduced Reversible Structural Transformations in Free-Standing CH ₃ NH ₃ PbI ₃ Perovskite Films. Journal of Physical Chemistry Letters, 2015, 6, 2332-2338.	4.6	190
57	Di-branched di-anchoring organic dyes for dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 1094.	30.8	188
58	Computational modelling of TiO ₂ surfaces sensitized by organic dyes with different anchoring groups: adsorption modes, electronic structure and implication for electron injection/recombination. Physical Chemistry Chemical Physics, 2012, 14, 920-928.	2.8	185
59	Ferroelectric Polarization of CH ₃ NH ₃ PbI ₃ : A Detailed Study Based on Density Functional Theory and Symmetry Mode Analysis. Journal of Physical Chemistry Letters, 2015, 6, 2223-2231.	4.6	179
60	Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15821-15824.	13.7	179
61	Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics. ACS Energy Letters, 2016, 1, 182-188.	17.4	179
62	Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 3532-3538.	4.6	175
63	Electronic and optical properties of mixed Sn–Pb organohalide perovskites: a first principles investigation. Journal of Materials Chemistry A, 2015, 3, 9208-9215.	10.3	170
64	Synthesis, Characterization, and DFT-TDDFT Computational Study of a Ruthenium Complex Containing a Functionalized Tetradentate Ligand. Inorganic Chemistry, 2006, 45, 4642-4653.	4.0	167
65	The Role of Substituents on Functionalized 1,10-Phenanthroline in Controlling the Emission Properties of Cationic Iridium(III) Complexes of Interest for Electroluminescent Devices. Inorganic Chemistry, 2007, 46, 8533-8547.	4.0	164
66	A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO. Coordination Chemistry Reviews, 2011, 255, 2704-2726.	18.8	161
67	Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 192-198.	3.7	160
68	Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment. Physical Chemistry Chemical Physics, 2012, 14, 15963.	2.8	151
69	Influence of Surface Termination on the Energy Level Alignment at the CH ₃ NH ₃ PbI ₃ Perovskite/C60 Interface. Chemistry of Materials, 2017, 29, 958-968.	6.7	149
70	Calculation of near-edge x-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water. Journal of Chemical Physics, 2004, 120, 8632-8637.	3.0	148
71	Ionotronic Halide Perovskite Driftâ€Diffusive Synapses for Lowâ€Power Neuromorphic Computation. Advanced Materials, 2018, 30, e1805454.	21.0	146
72	Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation. Journal of Physical Chemistry C, 2011, 115, 23126-23133.	3.1	145

#	Article	IF	CITATIONS
73	Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. ACS Energy Letters, 2020, 5, 2787-2795.	17.4	143
74	Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor l€-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy and Environmental Science, 2011, 4, 1820.	30.8	140
75	Joint electrical, photophysical and computational studies on D-ï€-A dye sensitized solar cells: the impacts of dithiophene rigidification. Chemical Science, 2012, 3, 976.	7.4	140
76	Electronic and optical properties of MAPbX ₃ perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis. Physical Chemistry Chemical Physics, 2016, 18, 27158-27164.	2.8	140
77	Modeling Excited States and Alignment of Energy Levels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges. Journal of Physical Chemistry C, 2013, 117, 3685-3700.	3.1	137
78	Large electrostrictive response in lead halide perovskites. Nature Materials, 2018, 17, 1020-1026.	27.5	137
79	Ab Initio Determination of Ground and Excited State Oxidation Potentials of Organic Chromophores for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22742-22750.	3.1	135
80	The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. Journal of the American Chemical Society, 2020, 142, 2364-2374.	13.7	132
81	Tin versus Lead Redox Chemistry Modulates Charge Trapping and Self-Doping in Tin/Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 3546-3556.	4.6	132
82	Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2015, 17, 9394-9409.	2.8	130
83	Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells. Dyes and Pigments, 2011, 90, 304-310.	3.7	126
84	Tuning halide perovskite energy levels. Energy and Environmental Science, 2021, 14, 1429-1438.	30.8	124
85	Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] in water solution: influence of the pH. Chemical Physics Letters, 2004, 389, 204-208.	2.6	121
86	Defect activity in metal halide perovskites with wide and narrow bandgap. Nature Reviews Materials, 2021, 6, 986-1002.	48.7	121
87	Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17, 598-605.	31.5	121
88	Direct vs. indirect injection mechanisms in perylene dye-sensitized solar cells: A DFT/TDDFT investigation. Chemical Physics Letters, 2010, 493, 323-327.	2.6	118
89	Modeling Materials and Processes in Hybrid/Organic Photovoltaics: From Dye-Sensitized to Perovskite Solar Cells. Accounts of Chemical Research, 2014, 47, 3349-3360.	15.6	117
90	Origin of low electron–hole recombination rate in metal halide perovskites. Energy and Environmental Science, 2018, 11, 101-105.	30.8	113

#	Article	IF	CITATIONS
91	Photophysical Properties of [Ru(phen)2(dppz)]2+Intercalated into DNA:Â An Integrated Carâ^'Parrinello and TDDFT Study. Journal of the American Chemical Society, 2005, 127, 14144-14145.	13.7	112
92	Electronic Structure and Reactivity of Isomeric Oxo-Mn(V) Porphyrins:Â Effects of Spin-State Crossing and pKaModulation. Inorganic Chemistry, 2006, 45, 4268-4276.	4.0	107
93	Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chemical Communications, 2008, , 5318.	4.1	107
94	Solvent Effects on the UV (n→ ï€*) and NMR (13C and17O) Spectra of Acetone in Aqueous Solution. An Integrated Carâ^'Parrinello and DFT/PCM Approach. Journal of Physical Chemistry B, 2005, 109, 445-453.	2.6	106
95	High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene–Dithiophene Derivatives as Hole-Transporting Materials. ACS Energy Letters, 2016, 1, 107-112.	17.4	105
96	Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films. Journal of the American Chemical Society, 2019, 141, 10812-10820.	13.7	104
97	Novel Carbazole-Phenothiazine Dyads for Dye-Sensitized Solar Cells: A Combined Experimental and Theoretical Study. ACS Applied Materials & Interfaces, 2013, 5, 9635-9647.	8.0	102
98	Rashba Band Splitting in Organohalide Lead Perovskites: Bulk and Surface Effects. Journal of Physical Chemistry Letters, 2017, 8, 2247-2252.	4.6	101
99	Mechanism of Reversible Trap Passivation by Molecular Oxygen in Lead-Halide Perovskites. ACS Energy Letters, 2017, 2, 2794-2798.	17.4	100
100	Simulating Dye-Sensitized TiO ₂ Heterointerfaces in Explicit Solvent: Absorption Spectra, Energy Levels, and Dye Desorption. Journal of Physical Chemistry Letters, 2011, 2, 813-817.	4.6	98
101	Cyclometalated Iridium(III) Complexes Based on Phenyl-Imidazole Ligand. Inorganic Chemistry, 2011, 50, 451-462.	4.0	98
102	Ultrafast THz Probe of Photoinduced Polarons in Lead-Halide Perovskites. Physical Review Letters, 2019, 122, 166601.	7.8	98
103	Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nature Communications, 2021, 12, 6394.	12.8	98
104	Understanding Performance Limiting Interfacial Recombination in <i>pin</i> Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	95
105	White-light phosphorescence emission from a single molecule: application to OLED. Chemical Communications, 2009, , 4672.	4.1	92
106	Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4′-COOâ^'-2,2′-bpy)2(X)2]4â^' (X=NCS, Cl) dyes in water solution. Chemical Physics Letters, 2005, 42 115-120.	152.6	91
107	Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nature Communications, 2021, 12, 3472.	12.8	89
108	Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 620-627.	4.6	88

#	Article	IF	CITATIONS
109	Modeling the Interaction of Molecular Iodine with MAPbI ₃ : A Probe of Lead-Halide Perovskites Defect Chemistry. ACS Energy Letters, 2018, 3, 447-451.	17.4	88
110	Cyclometallated iridium(iii) complexes with substituted 1,10-phenanthrolines: a new class of highly active organometallic second order NLO-phores with excellent transparency with respect to second harmonic emission. Chemical Communications, 2007, , 4116.	4.1	87
111	Computational Investigation of Dye–lodine Interactions in Organic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 5965-5973.	3.1	86
112	A TDDFT study of the ruthenium(II) polyazaaromatic complex [Ru(dppz)(phen)2]2+ in solution. Chemical Physics Letters, 2004, 396, 43-48.	2.6	84
113	Polarons in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1902748.	19.5	84
114	Solvent Effects on the Adsorption Geometry and Electronic Structure of Dye-Sensitized TiO ₂ : A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 5932-5940.	3.1	83
115	Terpyridine Zn(II), Ru(III), and Ir(III) Complexes:  The Relevant Role of the Nature of the Metal Ion and of the Ancillary Ligands on the Second-Order Nonlinear Response of Terpyridines Carrying Electron Donor or Electron Acceptor Groups. Inorganic Chemistry, 2005, 44, 8967-8978.	4.0	82
116	Time-dependent density functional theory study of squaraine dye-sensitized solar cells. Chemical Physics Letters, 2009, 475, 49-53.	2.6	82
117	Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. Journal of Physical Chemistry C, 2013, 117, 3874-3887.	3.1	82
118	Universal approach toward high-efficiency two-dimensional perovskite solar cells <i>via</i> a vertical-rotation process. Energy and Environmental Science, 2020, 13, 3093-3101.	30.8	82
119	Globularity‧elected Large Molecules for a New Generation of Multication Perovskites. Advanced Materials, 2017, 29, 1702005.	21.0	81
120	Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes. Inorganic Chemistry, 2016, 55, 6653-6659.	4.0	80
121	A Combined Computational and Experimental Study of Polynuclear Ruâ^'TPPZ Complexes:Â Insight into the Electronic and Optical Properties of Coordination Polymers. Journal of the American Chemical Society, 2004, 126, 9715-9723.	13.7	78
122	Absorption and Emission of the Apigenin and Luteolin Flavonoids: A TDDFT Investigation. Journal of Physical Chemistry A, 2009, 113, 15118-15126.	2.5	77
123	Stable Ligand Coordination at the Surface of Colloidal CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 3715-3726.	4.6	77
124	Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective. Journal of Physical Chemistry Letters, 2013, 4, 956-974.	4.6	76
125	Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering. Energy and Environmental Science, 2013, 6, 1221.	30.8	76
126	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	30.8	76

#	Article	IF	CITATIONS
127	Solvents for Processing Stable Tin Halide Perovskites. ACS Energy Letters, 2021, 6, 959-968.	17.4	76
128	Understanding the Solution Chemistry of Lead Halide Perovskites Precursors. ACS Applied Energy Materials, 2019, 2, 3400-3409.	5.1	74
129	Theoretical design of phosphorescence parameters for organic electro-luminescence devices based on iridium complexes. Chemical Physics, 2009, 358, 245-257.	1.9	73
130	Interplay of Stereoelectronic and Enviromental Effects in Tuning the Structural and Magnetic Properties of a Prototypical Spin Probe:Â Further Insights from a First Principle Dynamical Approach. Journal of the American Chemical Society, 2006, 128, 4338-4347.	13.7	72
131	From Large to Small Polarons in Lead, Tin, and Mixed Lead–Tin Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1790-1798.	4.6	72
132	Waterâ€Stable DMASnBr ₃ Leadâ€Free Perovskite for Effective Solarâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 3611-3618.	13.8	72
133	Optical Properties and Aggregation of Phenothiazine-Based Dye-Sensitizers for Solar Cells Applications: A Combined Experimental and Computational Investigation. Journal of Physical Chemistry C, 2013, 117, 9613-9622.	3.1	70
134	Influence of Donor Groups of Organic Dâ~π–A Dyes on Open-Circuit Voltage in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 1572-1578.	3.1	69
135	Engineering of thiocyanate-free Ru(ii) sensitizers for high efficiency dye-sensitized solar cells. Chemical Science, 2013, 4, 2423.	7.4	67
136	Cyclometalated Ir ^{III} Complexes with Substituted 1,10â€Phenanthrolines: A New Class of Efficient Cationic Organometallic Secondâ€Order NLO Chromophores. Chemistry - A European Journal, 2010, 16, 4814-4825.	3.3	65
137	Luminescent cyclometallated Ir(iii) and Pt(ii) complexes with β-diketonate ligands as highly active second-order NLO chromophores. Chemical Communications, 2010, 46, 2414.	4.1	64
138	Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society, 2015, 137, 15460-15468.	13.7	64
139	First-Principles Modeling of Bismuth Doping in the MAPbI ₃ Perovskite. Journal of Physical Chemistry C, 2018, 122, 14107-14112.	3.1	64
140	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. Journal of the American Chemical Society, 2019, 141, 13459-13467.	13.7	62
141	Tuning the Photoinduced O2-Evolving Reactivity of Mn4O47+, Mn4O46+, and Mn4O3(OH)6+ Manganeseâ^'Oxo Cubane Complexes. Inorganic Chemistry, 2006, 45, 189-195.	4.0	60
142	Tetraaryl Zn ^{II} Porphyrinates Substituted at βâ€Pyrrolic Positions as Sensitizers in Dyeâ€Sensitized Solar Cells: A Comparison with <i>meso</i> â€Disubstituted Push–Pull Zn ^{II} Porphyrinates. Chemistry - A European Journal, 2013, 19, 10723-10740.	3.3	60
143	Enhanced TiO ₂ /MAPbl ₃ Electronic Coupling by Interface Modification with Pbl ₂ . Chemistry of Materials, 2016, 28, 3612-3615.	6.7	60
144	Long-Lived Photoinduced Polarons in Organohalide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 3081-3086.	4.6	59

#	Article	IF	CITATIONS
145	Solvent-Free Synthetic Route for Cerium(IV) Metal–Organic Frameworks with UiO-66 Architecture and Their Photocatalytic Applications. ACS Applied Materials & Interfaces, 2019, 11, 45031-45037.	8.0	58
146	Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene π-conjugated quaterpyridine for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 234-242.	3.3	57
147	Band Gap Engineering in MASnBr ₃ and CsSnBr ₃ Perovskites: Mechanistic Insights through the Application of Pressure. Journal of Physical Chemistry Letters, 2019, 10, 7398-7405.	4.6	57
148	Surface Reconstruction Engineering with Synergistic Effect of Mixedâ€Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102902.	14.9	57
149	Computational Modeling of Stark Effects in Organic Dye-Sensitized TiO ₂ Heterointerfaces. Journal of Physical Chemistry Letters, 2011, 2, 1261-1267.	4.6	56
150	Optical properties of ZnO nanostructures: a hybrid DFT/TDDFT investigation. Physical Chemistry Chemical Physics, 2011, 13, 467-475.	2.8	56
151	Modeling ZnS and ZnO Nanostructures: Structural, Electronic, and Optical Properties. Journal of Physical Chemistry C, 2011, 115, 25219-25226.	3.1	56
152	First-Principles Modeling of a Dye-Sensitized TiO ₂ /lrO ₂ Photoanode for Water Oxidation. Journal of the American Chemical Society, 2015, 137, 5798-5809.	13.7	56
153	Rationalizing the Molecular Design of Holeâ€Selective Contacts to Improve Charge Extraction in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900990.	19.5	56
154	Fluorinated β-Diketonate Diglyme Lanthanide Complexes as New Second-Order Nonlinear Optical Chromophores: The Role of f Electrons in the Dipolar and Octupolar Contribution to Quadratic Hyperpolarizability. Journal of the American Chemical Society, 2010, 132, 4966-4970.	13.7	55
155	Modeling Ruthenium-Dye-Sensitized TiO ₂ Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 18124-18131.	3.1	55
156	Permanent excimer superstructures by supramolecular networking of metal quantum clusters. Science, 2016, 353, 571-575.	12.6	54
157	Experimental Strategy and Mechanistic View to Boost the Photocatalytic Activity of Cs ₃ Bi ₂ Br ₉ Leadâ€Free Perovskite Derivative by gâ€C ₃ N ₄ Composite Engineering. Advanced Functional Materials, 2021, 31, 2104428.	14.9	53
158	Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment. Scientific Reports, 2019, 9, 15159.	3.3	52
159	Quantum Chemical Evaluation of Protein Control over Heme Ligation:Â CO/O2Discrimination in Myoglobin. Journal of Physical Chemistry B, 2005, 109, 3065-3070.	2.6	51
160	Panchromatic Crossâ€&ubstituted Squaraines for Dyeâ€&ensitized Solar Cell Applications. ChemSusChem, 2009, 2, 621-624.	6.8	51
161	Molecular Tailoring of New Thieno(bis)imide-Based Semiconductors for Single Layer Ambipolar Light Emitting Transistors. Chemistry of Materials, 2013, 25, 668-676.	6.7	51
162	Time-Dependent Density Functional Theory Modeling of Spin–Orbit Coupling in Ruthenium and Osmium Solar Cell Sensitizers. Journal of Physical Chemistry C, 2014, 118, 17067-17078.	3.1	51

#	Article	IF	CITATIONS
163	Ligand Induced Spectral Changes in CdSe Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 19736-19745.	8.0	51
164	Vibrational Response of Methylammonium Lead Iodide: From Cation Dynamics to Phonon–Phonon Interactions. ChemSusChem, 2016, 9, 2994-3004.	6.8	51
165	Evidence of a Borderline Region between E1cb and E2 Elimination Reaction Mechanisms:Â A Combined Experimental and Theoretical Study of Systems Activated by the Pyridine Ring. Journal of the American Chemical Society, 2005, 127, 15151-15160.	13.7	50
166	Bisâ€Donor–Bisâ€Acceptor Tribranched Organic Sensitizers for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2011, 2011, 6195-6205.	2.4	50
167	DFT Investigations of Formic Acid Adsorption on Single-Wall TiO ₂ Nanotubes: Effect of the Surface Curvature. Journal of Physical Chemistry C, 2011, 115, 2179-2186.	3.1	49
168	Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. Journal of Materials Chemistry A, 2020, 8, 6882-6892.	10.3	49
169	Dynamical Density Functional Study of Acetylene to Vinylidene Isomerization in (Cp)(CO)2Mn(HCâ‹®CH). Organometallics, 2002, 21, 2715-2723.	2.3	48
170	Density Functional Study of Alkyne to Vinylidene Rearrangements in [(Cp)(PMe3)2Ru(HCâ‹®CR)]+ (R = H,) Tj ET(Qq <u>Q Q</u> 0 rg	BT_/Overlock
171	Second harmonic generation in nonsymmetrical squaraines: tuning of the directional charge transfer character in highly delocalized dyes. Journal of Materials Chemistry, 2009, 19, 8190.	6.7	48
172	Tuning the Dipolar Secondâ€Order Nonlinear Optical Properties of Cyclometalated Platinum(II) Complexes with Tridentate N^C^N Binding Ligands. Chemistry - A European Journal, 2013, 19, 9875-9883.	3.3	48
173	Dye-Sensitized Photocatalytic Hydrogen Generation: Efficiency Enhancement by Organic Photosensitizer–Coadsorbent Intermolecular Interaction. ACS Energy Letters, 2018, 3, 85-91.	17.4	48
174	Thiocyanate-Free Ruthenium(II) Sensitizer with a Pyrid-2-yltetrazolate Ligand for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2013, 52, 10723-10725.	4.0	47
175	Outstanding Passivation Effect by a Mixed-Salt Interlayer with Internal Interactions in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3159-3167.	17.4	47
176	Hyperfine coupling constants of dimethyl nitroxide in aqueous solution: Car–Parrinello molecular dynamics and discrete-continuum approaches. Chemical Physics Letters, 2004, 395, 120-126.	2.6	46
177	Surface Polarization Drives Photoinduced Charge Separation at the P3HT/Water Interface. ACS Energy Letters, 2016, 1, 454-463.	17.4	46
178	Structural and electronic properties of dye-sensitized TiO ₂ for solar cell applications: from single molecules to self-assembled monolayers. Journal of Materials Chemistry C, 2016, 4, 4346-4373.	5.5	46
179	Spider‣ike Oligothiophenes. Chemistry - A European Journal, 2008, 14, 459-471.	3.3	45

A Multitechnique Physicochemical Investigation of Various Factors Controlling the Photoaction180Spectra and of Some Aspects of the Electron Transfer for a Series of Pushâ€"Pull Zn(II) Porphyrins3.145Acting as Dyes in DSSCs. Journal of Physical Chemistry C, 2011, 115, 23170-23182.3.145

#	Article	IF	CITATIONS
181	A first-principles study of Il–VI (II = Zn; VI = O, S, Se, Te) semiconductor nanostructures. Journal of Materials Chemistry, 2012, 22, 21453.	6.7	45
182	Energy Level Tuning at the MAPbl ₃ Perovskite/Contact Interface Using Chemical Treatment. ACS Energy Letters, 2019, 4, 2181-2184.	17.4	45
183	Halogenâ€Bonded Holeâ€Transport Material Suppresses Charge Recombination and Enhances Stability of Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101553.	19.5	44
184	Measured binding coefficients for iodine and ruthenium dyes; implications for recombination in dye sensitised solar cells. Physical Chemistry Chemical Physics, 2012, 14, 15421.	2.8	43
185	Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites: Competition between Polaron Stabilization and Cation Disorder. ACS Energy Letters, 2019, 4, 2013-2020.	17.4	43
186	The role of 5-R-1,10-phenanthroline (R=CH3, NO2) on the emission properties and second-order NLO response of cationic Ir(III) organometallic chromophores. Inorganica Chimica Acta, 2008, 361, 4070-4076.	2.4	41
187	Modeling the effect of ionic additives on the optical and electronic properties of a dye-sensitized TiO2 heterointerface: absorption, charge injection and aggregation. Journal of Materials Chemistry A, 2013, 1, 14675.	10.3	41
188	Unexpectedly high second-order nonlinear optical properties of simple Ru and Pt alkynyl complexes as an analytical springboard for NLO-active polymer films. Chemical Communications, 2014, 50, 7986.	4.1	41
189	Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States. Journal of Chemical Theory and Computation, 2014, 10, 4014-4024.	5.3	41
190	Superatomic Two-Dimensional Semiconductor. Nano Letters, 2018, 18, 1483-1488.	9.1	41
191	Sterically demanded unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 518-529.	3.7	40
192	Chlorine Incorporation in the CH ₃ NH ₃ PbI ₃ Perovskite: Small Concentration, Big Effect. Inorganic Chemistry, 2017, 56, 74-83.	4.0	40
193	Role of Ligand Bending in the Photodissociation of O2vs CO-heme:Â A Time-Dependent Density Functional Study. Journal of the American Chemical Society, 2003, 125, 15710-15711.	13.7	38
194	An inconvenient influence of iridium(iii) isomer on OLED efficiency. Dalton Transactions, 2010, 39, 8914.	3.3	38
195	Corrole dyes for dye-sensitized solar cells: The crucial role of the dye/semiconductor energy level alignment. Computational and Theoretical Chemistry, 2014, 1030, 59-66.	2.5	38
196	New Fullerene Derivative as an nâ€Type Material for Highly Efficient, Flexible Perovskite Solar Cells of a pâ€iâ€n Configuration. Advanced Functional Materials, 2020, 30, 2004357.	14.9	38
197	Penning ionization of N2O molecules by He*(2S3,1) and Ne*(P2,03) metastable atoms: Theoretical considerations about the intermolecular interactions. Journal of Chemical Physics, 2005, 122, 164308.	3.0	37
198	Penning ionization of N2O molecules by He*(2S3,1) and Ne*(P2,03) metastable atoms: A crossed beam study. Journal of Chemical Physics, 2005, 122, 164307.	3.0	37

#	Article	IF	CITATIONS
199	High Open-Circuit Voltages: Evidence for a Sensitizer-Induced TiO2 Conduction Band Shift in Ru(II)-Dye Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 4497-4502.	6.7	37
200	An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theoretical Chemistry Accounts, 2007, 117, 1093-1104.	1.4	36
201	Metalâ€Free Benzodithiopheneâ€Containing Organic Dyes for Dyeâ€&ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 84-94.	2.4	36
202	An Oxa[5]helicene-Based Racemic Semiconducting Glassy Film for Photothermally Stable Perovskite Solar Cells. IScience, 2019, 15, 234-242.	4.1	36
203	Energy vs Charge Transfer in Manganese-Doped Lead Halide Perovskites. ACS Energy Letters, 2021, 6, 1869-1878.	17.4	36
204	Clues from defect photochemistry. Nature Materials, 2018, 17, 383-384.	27.5	35
205	Efficient blue light-emitting diodes based on a classical "push–pull―architecture molecule 4,4′-di-(2-(2,5-dimethoxyphenyl)ethenyl)-2,2′-bipyridine. Journal of Materials Chemistry, 2006, 16, 4468-4474.	6.7	34
206	Time-dependent and coupled-perturbed DFT and HF investigations on the absorption spectrum and non-linear optical properties of push–pull M(II)–porphyrin complexes (M=Zn, Cu, Ni). Chemical Physics Letters, 2007, 447, 10-15.	2.6	34
207	Acid–base properties of the N3 ruthenium(ii) solar cell sensitizer: a combined experimental and computational analysis. Dalton Transactions, 2012, 41, 11841.	3.3	34
208	Benchmarking DFT and semi-empirical methods for a reliable and cost-efficient computational screening of benzofulvene derivatives as donor materials for small-molecule organic solar cells. Journal of Physics Condensed Matter, 2016, 28, 074005.	1.8	34
209	Large-scale <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:mrow> <mmi:mi>G</mmi:mi> <mmi:mi>W</mmi:mi> -BSE calculations with <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:msup> <mmi:mi>N</mmi:mi> <mmi:mn>3 </mmi:mn></mmi:msup></mmi:math </mmi:mrow></mmi:math 	3.2 <td>ow> 34 sup> </td>	ow> 34 sup>
210	First principles modelling of perovskite solar cells based on TiO ₂ and Al ₂ O ₃ : stability and interfacial electronic structure. Journal of Materials Chemistry A, 2017, 5, 2339-2345.	10.3	34
211	The Prospect of Lead-Free Perovskite Photovoltaics. ACS Energy Letters, 2021, 6, 1586-1587.	17.4	34
212	Effect of Sensitizer Structure and TiO ₂ Protonation on Charge Generation in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16927-16940.	3.1	33
213	Reconstruction of frozen-core all-electron orbitals from pseudo-orbitals. Journal of Chemical Physics, 2001, 115, 5791-5795.	3.0	32
214	Acetylene to vinylidene rearrangements on electron rich d6 metal centers: a density functional study. Dalton Transactions, 2004, , 3225.	3.3	32
215	Full Quantum Mechanical Investigation of the Unimolecular versus Bimolecular Acetylene to Vinylidene Rearrangement in the Prototype trans-Cl-Rh(Pi-Pr3)2 Complex. Organometallics, 2007, 26, 5285-5288.	2.3	32
216	Ab Initio Prediction of the Emission Color in Phosphorescent Iridium(III) Complexes for OLEDs. Journal of Physical Chemistry B, 2008, 112, 13181-13183.	2.6	32

#	Article	IF	CITATIONS
217	First-Principles Computational Modeling of Fluorescence Resonance Energy Transfer in Co-Sensitized Dye Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 2146-2153.	4.6	32
218	Structural and Electronic Properties of Photoexcited TiO ₂ Nanoparticles from First Principles. Journal of Chemical Theory and Computation, 2015, 11, 635-645.	5.3	32
219	Influence of Disorder and Anharmonic Fluctuations on the Dynamical Rashba Effect in Purely Inorganic Lead-Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 291-298.	3.1	32
220	Spectroscopic properties of cyclometallated iridium complexes by TDDFT. Computational and Theoretical Chemistry, 2009, 914, 74-86.	1.5	31
221	Impact of Spin–Orbit Coupling on Photocurrent Generation in Ruthenium Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 375-380.	4.6	31
222	Exploring the Limits of Three-Dimensional Perovskites: The Case of FAPb _{1–<i>x</i>} Sn _{<i>x</i>} Br ₃ . ACS Energy Letters, 2018, 3, 1353-1359.	17.4	31
223	Graphene–organic hybrids as processable, tunable platforms for pH-dependent photoemission, obtained by a new modular approach. Journal of Materials Chemistry, 2012, 22, 18237.	6.7	30
224	Quaterpyridine Ligands for Panchromatic Ru(II) Dye Sensitizers. Journal of Organic Chemistry, 2012, 77, 7945-7956.	3.2	30
225	Effect of the anchoring group in the performance of carbazole-phenothiazine dyads for dye-sensitized solar cells. Dyes and Pigments, 2015, 113, 536-545.	3.7	30
226	Synthesis, Properties, and Modeling of Cs _{1–<i>x</i>} Rb <i>_x</i> SnBr ₃ Solid Solution: A New Mixed-Cation Lead-Free All-Inorganic Perovskite System. Chemistry of Materials, 2019, 31, 3527-3533.	6.7	30
227	A Joint Experimental and Theoretical Investigation on Nonlinear Optical (NLO) Properties of a New Class of Push–Pull Spirobifluorene Compounds. European Journal of Organic Chemistry, 2010, 2010, 4004-4016.	2.4	29
228	Stability of Tin- versus Lead-Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces. Journal of Physical Chemistry Letters, 2022, 13, 2321-2329.	4.6	29
229	Pyridineâ^ EDOT Heteroaryleneâ^ Vinylene Donorâ^ Acceptor Polymers. Macromolecules, 2010, 43, 9698-9713.	4.8	28
230	Computational modeling of single- versus double-anchoring modes in di-branched organic sensitizers on TiO ₂ surfaces: structural and electronic properties. Physical Chemistry Chemical Physics, 2014, 16, 4709-4719.	2.8	28
231	New thiocyanate-free ruthenium(<scp>ii</scp>) sensitizers with different pyrid-2-yl tetrazolate ligands for dye-sensitized solar cells. Dalton Transactions, 2015, 44, 11788-11796.	3.3	28
232	Energy Level Alignment at Titanium Oxide–Dye Interfaces: Implications for Electron Injection and Light Harvesting. Journal of Physical Chemistry C, 2015, 119, 9899-9909.	3.1	28
233	Light-Induced Formation of Pb ³⁺ Paramagnetic Species in Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 1840-1847.	17.4	28
234	Role of spacer cations and structural distortion in two-dimensional germanium halide perovskites. Journal of Materials Chemistry C, 2021, 9, 9899-9906.	5.5	28

#	Article	IF	CITATIONS
235	Ab initio molecular dynamics simulations of organometallic reactivity. Coordination Chemistry Reviews, 2006, 250, 1497-1513.	18.8	27
236	A Simple Synthetic Route to Obtain Pure <i>Trans</i> â€Ruthenium(II) Complexes for Dye‧ensitized Solar Cell Applications. ChemSusChem, 2013, 6, 2170-2180.	6.8	27
237	Computational Modeling of Isoindigo-Based Polymers Used in Organic Solar Cells. Journal of Physical Chemistry C, 2013, 117, 17940-17954.	3.1	27
238	Synthesis, size-dependent optoelectronic and charge transport properties of thieno(bis)imide end-substituted molecular semiconductors. Organic Electronics, 2013, 14, 3089-3097.	2.6	27
239	Ï€-Core tailoring for new high performance thieno(bis)imide based n-type molecular semiconductors. Chemical Communications, 2013, 49, 4298-4300.	4.1	27
240	Physicochemical Investigation of the Panchromatic Effect on β-Substituted Zn ^{II} Porphyrinates for DSSCs: The Role of the π Bridge between a Dithienylethylene Unit and the Porphyrinic Ring. Journal of Physical Chemistry C, 2014, 118, 7307-7320.	3.1	27
241	Functionalized Ruthenium Dialkynyl Complexes with High Second-Order Nonlinear Optical Properties and Good Potential as Dye Sensitizers for Solar Cells. Organometallics, 2015, 34, 94-104.	2.3	27
242	Composition-Dependent Struggle between Iodine and Tin Chemistry at the Surface of Mixed Tin/Lead Perovskites. ACS Energy Letters, 2021, 6, 969-976.	17.4	27
243	Charge-displacement analysis for excited states. Journal of Chemical Physics, 2014, 140, 054110.	3.0	26
244	An Integrated Experimental and Theoretical Approach to the Spectroscopy of Organicâ€Dyeâ€Sensitized TiO ₂ Heterointerfaces: Disentangling the Effects of Aggregation, Solvation, and Surface Protonation. ChemPhysChem, 2014, 15, 1116-1125.	2.1	26
245	Triphenylamine-functionalized corrole sensitizers for solar-cell applications. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 194-202.	1.8	26
246	Reaction Mechanism of Photocatalytic Hydrogen Production at Water/Tin Halide Perovskite Interfaces. ACS Energy Letters, 2022, 7, 1308-1315.	17.4	26
247	Coordination and Haptotropic Rearrangement of Cr(CO)3on (n,0) Nanotube Sidewalls:Â A Dynamical Density Functional Study. Journal of Physical Chemistry B, 2004, 108, 5243-5249.	2.6	25
248	A vinyleneâ€linked benzo[1,2â€ <i>b</i> :4,5â€ <i>b'</i>]dithiopheneâ€2,1,3â€benzothiadiazole lowâ€bandgap po Journal of Polymer Science Part A, 2012, 50, 2829-2840.	olymer. 2.3	25
249	Role of Hot Singlet Excited States in Charge Generation at the Black Dye/TiO ₂ Interface. ACS Applied Materials & Interfaces, 2013, 5, 4334-4339.	8.0	25
250	Benzodithiophene based organic dyes for DSSC: Effect of alkyl chain substitution on dye efficiency. Dyes and Pigments, 2015, 121, 351-362.	3.7	25
251	Cobalt Polypyridyl Complexes as Transparent Solutionâ€Processable Solidâ€ S tate Charge Transport Materials. Advanced Energy Materials, 2016, 6, 1600874.	19.5	25
252	Trends in Perovskite Solar Cells and Optoelectronics: Status of Research and Applications from the PSCO Conference. ACS Energy Letters, 2017, 2, 857-861.	17.4	25

#	Article	IF	CITATIONS
253	Electronic Properties and Carrier Trapping in Bi and Mn Co-doped CsPbCl ₃ Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 5482-5489.	4.6	25
254	Modeling Materials and Processes in Dye-Sensitized Solar Cells: Understanding the Mechanism, Improving the Efficiency. Topics in Current Chemistry, 2013, 352, 151-236.	4.0	24
255	Transition Dipole Moments of n = 1, 2, and 3 Perovskite Quantum Wells from the Optical Stark Effect and Many-Body Perturbation Theory. Journal of Physical Chemistry Letters, 2020, 11, 716-723.	4.6	24
256	An EFISH, Theoretical, and PGSE NMR Investigation on the Relevant Role of Aggregation on the Second Order Response in CHCl3 of the Pushâ^'Pull Chromophores [5-[[4′-(Dimethylamino)phenyl]ethynyl]-15-[(4′′-nitrophenyl)ethynyl]-10,20-diphenylporphyrinate] M(II)	(M) ¹ Tj ET	၃၀ ²³ 0 0 rgBT
257	Modulating the electronic properties of asymmetric push–pull and symmetric Zn(II)-diarylporphyrinates with para substituted phenylethynyl moieties in 5,15 meso positions: A combined electrochemical and spectroscopic investigation. Electrochimica Acta, 2012, 85, 509-523.	5.2	23
258	Ab Initio Simulation of the Absorption Spectra of Photoexcited Carriers in TiO ₂ Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 3597-3602.	4.6	23
259	Theoretical Investigation of Adsorption, Dynamics, Self-Aggregation, and Spectroscopic Properties of the D102 Indoline Dye on an Anatase (101) Substrate. Journal of Physical Chemistry C, 2016, 120, 2787-2796.	3.1	23
260	Formation of Color Centers in Lead Iodide Perovskites: Self-Trapping and Defects in the Bulk and Surfaces. Chemistry of Materials, 2020, 32, 6916-6924.	6.7	23
261	Effect of electronic doping and traps on carrier dynamics in tin halide perovskites. Materials Horizons, 2022, 9, 1763-1773.	12.2	23
262	Computational Spectroscopy Characterization of the Species Involved in Dye Oxidation and Regeneration Processes in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 18863-18872.	3.1	22
263	Shape and Morphology Effects on the Electronic Structure of TiO ₂ Nanostructures: From Nanocrystals to Nanorods. ACS Applied Materials & Interfaces, 2014, 6, 2471-2478.	8.0	22
264	Strong Electron Localization in Tin Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 5339-5343.	4.6	22
265	Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface. Physical Chemistry Chemical Physics, 2012, 14, 10662.	2.8	21
266	A new terpyridine cobalt complex redox shuttle for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 406, 106-112.	2.4	21
267	Near-infrared absorbing unsymmetrical Zn(II) phthalocyanine for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 407, 289-296.	2.4	21
268	Engineering of Ru(<scp>ii</scp>) dyes for interfacial and light-harvesting optimization. Dalton Transactions, 2014, 43, 2726-2732.	3.3	21
269	Thiocyanateâ€Free Ruthenium(II) Sensitizers for Dye ensitized Solar Cells Based on the Cobalt Redox Couple. ChemSusChem, 2014, 7, 2930-2938	6.8	21
270	Effect of Molecular Fluctuations on Hole Diffusion within Dye Monolayers. Chemistry of Materials, 2014, 26, 4731-4740.	6.7	21

#	Article	IF	CITATIONS
271	Riding the New Wave of Perovskites. ACS Energy Letters, 2017, 2, 922-923.	17.4	21
272	Combined Computational and Experimental Investigation on the Nature of Hydrated Iodoplumbate Complexes: Insights into the Dual Role of Water in Perovskite Precursor Solutions. Journal of Physical Chemistry B, 2020, 124, 11481-11490.	2.6	21
273	A combined experimental and theoretical approach revealing a direct mechanism for bifunctional water splitting on doped copper phosphide. Nanoscale, 2020, 12, 17769-17779.	5.6	21
274	Decoding ultrafast polarization responses in lead halide perovskites by the two-dimensional optical Kerr effect. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	21
275	A time-dependent density functional theory investigation on the nature of the electronic transitions involved in the nonlinear optical response of [Ru(CF3CO2)3T] (T = 4′-(C6H4-p-NBu2)-2,2′:6′,2″-terpyrid Dalton Transactions, 2006, , 852-859.	d ine).	20
276	Theoretical Investigations of the Effects of J-Aggregation on the Linear and Nonlinear Optical Properties of <i>E</i> -4-(4-Dimethylaminostyryl)-1-methylpyridinium [DAMS ⁺]. Journal of Physical Chemistry C, 2008, 112, 1213-1226.	3.1	20
277	Oligothiophenes Nanoâ€organized on a Cyclotetrasiloxane Scaffold as a Model of a Silicaâ€Bound Monolayer: Evidence for Intramolecular Excimer Formation. Chemistry - A European Journal, 2009, 15, 12791-12798.	3.3	20
278	Computational Investigations on Organic Sensitizers for Dye-Sensitized Solar Cell. Current Organic Synthesis, 2012, 9, 215-232.	1.3	20
279	DFT/TDDFT Study of the Adsorption of N3 and N719 Dyes on ZnO(101Ì0) Surfaces. Journal of Physical Chemistry A, 2014, 118, 5885-5893.	2.5	20
280	The effect of TiO ₂ surface on the electron injection efficiency in PbS quantum dot solar cells: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 6076-6086.	2.8	20
281	First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 12739-12748.	3.1	20
282	Origin of pressure-induced band gap tuning in tin halide perovskites. Materials Advances, 2020, 1, 2840-2845.	5.4	20
283	Observation of large Rashba spin–orbit coupling at room temperature in compositionally engineered perovskite single crystals and application in high performance photodetectors. Materials Today, 2021, 46, 18-27.	14.2	20
284	An investigation on the second order nonlinear optical response of tris-cyclometallated Ir(<scp>iii</scp>) complexes with variously substituted 2-phenylpyridines. Dalton Transactions, 2013, 42, 155-159.	3.3	19
285	Everything you always wanted to Know about Black Dye (but Were Afraid to Ask): A DFT/TDDFT Investigation. Chimia, 2013, 67, 121-128.	0.6	19
286	A ruthenium tetrazole complex-based high efficiency near infrared light electrochemical cell. Chemical Communications, 2017, 53, 6211-6214.	4.1	19
287	Modulating Band Alignment in Mixed Dimensionality 3D/2D Perovskites by Surface Termination Ligand Engineering. Chemistry of Materials, 2020, 32, 105-113.	6.7	19
288	Heteroaromatic Donor–Acceptor Ï€â€Conjugated 2,2′â€Bipyridines. European Journal of Organic Chemistry, 2008, 2008, 5047-5054.	2.4	18

#	Article	IF	CITATIONS
289	Towards Molecular Design Rationalization in Branched Multiâ€Thiophene Semiconductors: The 2â€Thienylâ€Persubstituted αâ€Oligothiophenes. Chemistry - A European Journal, 2010, 16, 9086-9098.	3.3	18
290	Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. RSC Advances, 2012, 2, 6209.	3.6	18
291	Pyridineâ€ <i>N</i> â€Oxide 2â€Carboxylic Acid: An Acceptor Group for Organic Sensitizers with Enhanced Anchoring Stability in Dyeâ€Sensitized Solar Cells. Asian Journal of Organic Chemistry, 2014, 3, 140-152.	2.7	18
292	Electronic and Optical Properties of Dye-Sensitized TiO2 Interfaces. Topics in Current Chemistry, 2014, 347, 1-45.	4.0	18
293	Introduction of a Bifunctional Cation Affords Perovskite Solar Cells Stable at Temperatures Exceeding 80 °C. ACS Energy Letters, 2019, 4, 2989-2994.	17.4	18
294	Halide-driven formation of lead halide perovskites: insight from <i>ab initio</i> molecular dynamics simulations. Materials Advances, 2021, 2, 3915-3926.	5.4	18
295	<i>In situ</i> cadmium surface passivation of perovskite nanocrystals for blue LEDs. Journal of Materials Chemistry A, 2021, 9, 26750-26757.	10.3	18
296	Cationic cyclometallated iridium(III) complexes with substituted 1,10-phenanthrolines: the role of the cyclometallated moiety on this new class of complexes with interesting luminescent and second order non linear optical properties. Journal of Materials Science: Materials in Electronics, 2009, 20, 460-464	2.2	17
297	New [(D-terpyridine)-Ru-(D or A-terpyridine)][4-EtPhCO2]2 complexes (D = electron donor group; A =) Tj ETQq1 Transactions, 2012, 41, 6707.	l 0.78431 3.3	4 rgBT /Ov <mark>er</mark> 17
298	Carbazole-based sensitizers for potential application to dye sensitized solar cells. Journal of Chemical Sciences, 2015, 127, 383-394.	1.5	17
299	New terpyridine-based ruthenium complexes for dye sensitized solar cells applications. Inorganica Chimica Acta, 2016, 442, 158-166.	2.4	17
300	Cation Engineering for Resonant Energy Level Alignment in Two-Dimensional Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 2528-2535.	4.6	17
301	Ab Initio Molecular Dynamics Simulations of Elimination Reactions in Water Solution:Â Exploring the Borderline Region between the E1cb and E2 Reaction Mechanisms. Journal of Physical Chemistry B, 2006, 110, 11014-11019.	2.6	16
302	Photophysical and Electrochemical Properties of Thiopheneâ€Based 2â€Arylpyridines. European Journal of Organic Chemistry, 2011, 2011, 5587-5598.	2.4	16
303	DFT/TDDFT investigation of the stepwise deprotonation in tetracycline: pKa assignment and UV–vis spectroscopy. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	16
304	Charge Carriers Are Not Affected by the Relatively Slow-Rotating Methylammonium Cations in Lead Halide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2019, 10, 5128-5134.	4.6	16
305	Four- and Five-Coordinate CO Insertion in the Copolymerization of Carbon Monoxide and Olefins Catalyzed by Diphosphine Nickel(II) Complexes:Â A Dynamical Density Functional Study. Organometallics, 2002, 21, 2036-2040.	2.3	15
306	Structural and Optical Properties of Solvated PbI ₂ in γ-Butyrolactone: Insight into the Solution Chemistry of Lead Halide Perovskite Precursors. Journal of Physical Chemistry Letters, 2020, 11, 6139-6145.	4.6	15

#	Article	IF	CITATIONS
307	Suppression of Tin Oxidation by 3D/2D Perovskite Interfacing. Journal of Physical Chemistry C, 2021, 125, 10901-10908.	3.1	15
308	Role of Terminal Group Position in Triphenylamine-Based Self-Assembled Hole-Selective Molecules in Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 17461-17469.	8.0	15
309	Theoretical investigation of the structural and electronic properties of luteolin, apigenin and their deprotonated species. Computational and Theoretical Chemistry, 2008, 868, 12-21.	1.5	14
310	Acid–base chemistry of luteolin and its methyl-ether derivatives: A DFT and ab initio investigation. Chemical Physics Letters, 2008, 462, 313-317.	2.6	14
311	Optoelectronic properties of (ZnO)60 isomers. Physical Chemistry Chemical Physics, 2012, 14, 14293.	2.8	14
312	Stability of ruthenium/organic dye co-sensitized solar cells: a joint experimental and computational investigation. RSC Advances, 2014, 4, 57620-57628.	3.6	14
313	Quantitative structure–property relationship modeling of ruthenium sensitizers for solar cells applications: novel tools for designing promising candidates. RSC Advances, 2015, 5, 23865-23873.	3.6	14
314	Mechanism of the Initial Conformational Transition of a Photomodulable Peptide. Angewandte Chemie - International Edition, 2005, 44, 6077-6081.	13.8	13
315	Merging of E2 and E1cb Reaction Mechanisms: A Combined Theoretical and Experimental Study. European Journal of Organic Chemistry, 2009, 2009, 5501-5504.	2.4	13
316	A combined molecular dynamics and computational spectroscopy study of a dye-sensitized solar cell. New Journal of Physics, 2011, 13, 085013.	2.9	13
317	Selective TDDFT with automatic removal of ghost transitions: application to a perylene-dye-sensitized solar cell model. Physical Chemistry Chemical Physics, 2012, 14, 8608.	2.8	13
318	Alignment of energy levels in dye/semiconductor interfaces by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>WEffects due to coadsorption of solvent molecules. Physical Review B, 2014, 90, .</mml:mi></mml:mrow></mml:math 	>⊲fn₂ml:m	ro ve >
319	A Conversation with Michael GrÃæel. ACS Energy Letters, 2017, 2, 1674-1676.	17.4	13
320	Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites. Chemistry of Materials, 2022, 34, 1121-1131.	6.7	13
321	First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient Approximation and Hybrid Functionals. Journal of Physical Chemistry Letters, 2021, 12, 11886-11893.	4.6	13
322	The unexpected similar second-order NLO response for nearly planar and largely twisted push–pull stilbazole chromophores: EFISH and theoretical TD-DFT evidence. Chemical Communications, 2005, , 5405.	4.1	12
323	pHâ€5ensitive Bis(2,2′:6′,2"â€ŧerpyridine)ruthenium(II) Complexes – A DFT/TDDFT Investigation of Their Spectroscopic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 1605-1613.	2.0	12
324	Effect of Structural Dynamics on the Opto-Electronic Properties of Bare and Hydrated ZnS QDs. Journal of Physical Chemistry C, 2014, 118, 3274-3284.	3.1	12

#	Article	IF	CITATIONS
325	Waterâ€Stable DMASnBr ₃ Leadâ€Free Perovskite for Effective Solarâ€Driven Photocatalysis. Angewandte Chemie, 2021, 133, 3655-3662.	2.0	12
326	A density functional study on the Pt(0)-catalysed hydrosilylation of ethylene. Computational and Theoretical Chemistry, 2003, 623, 277-288.	1.5	11
327	DFT Investigation of Ligand-Based Reduction of CO ₂ to CO on an Anionic Niobium Nitride Complex: Reaction Mechanism and Role of the Na ⁺ Counterion. Organometallics, 2011, 30, 4838-4846.	2.3	11
328	Assessment of new gem-silanediols as suitable sensitizers for dye-sensitized solarÂcells. Journal of Organometallic Chemistry, 2013, 723, 198-206.	1.8	11
329	Synthesis by MW-assisted direct arylation, side-arms driven self-assembly and functional properties of 9,10-dithienylanthracene orthogonal materials. Tetrahedron, 2014, 70, 6222-6228.	1.9	11
330	Optical absorption spectrum of the N3 solar cell sensitizer by second-order multireference perturbation theory. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	11
331	Iodide <i>vs</i> Chloride: The Impact of Different Lead Halides on the Solution Chemistry of Perovskite Precursors. ACS Applied Energy Materials, 2021, 4, 9827-9835.	5.1	11
332	A dynamical density functional study of CO insertion into the metal–alkyl bond in Ti(Cp)2(CH3)2. Dalton Transactions RSC, 2001, , 1023-1028.	2.3	10
333	The migratory insertion of carbon monoxide and methyl isocyanide into zirconium?carbon and titanium?carbon bonds anchored to a calix[4]arene moiety: a dynamical density functional study. Theoretical Chemistry Accounts, 2003, 110, 196-204.	1.4	10
334	Intramolecular Coupling of η2-Iminoacyls on Zirconium Bis(aryloxides) and Calix[4]arenes: Revised Mechanism by DFT Calculations and Carâ ''Parrinello Molecular Dynamics Simulations. Organometallics, 2005, 24, 1867-1875.	2.3	10
335	Novel heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and application in dye-sensitized solar cells. Dalton Transactions, 2015, 44, 5369-5378.	3.3	10
336	Monitoring the intramolecular charge transfer process in the Z907 solar cell sensitizer: a transient Vis and IR spectroscopy and ab initio investigation. Physical Chemistry Chemical Physics, 2015, 17, 21594-21604.	2.8	10
337	Photoinduced Energy Shift in Quantum-Dot-Sensitized TiO2: A First-Principles Analysis. Journal of Physical Chemistry Letters, 2015, 6, 1423-1429.	4.6	10
338	Mo 6 S 3 Br 6 : An Anisotropic 2D Superatomic Semiconductor. Advanced Functional Materials, 2019, 29, 1902951.	14.9	10
339	Combination of a large cation and coordinating additive improves carrier transport properties in quasi-2D perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9175-9190.	10.3	10
340	Highly stable 7-N,N-dibutylamino-2-azaphenanthrene and 8-N,N-dibutylamino-2-azachrysene as a new class of second order NLO-active chromophores. Chemical Communications, 2010, 46, 8374.	4.1	9
341	Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization. Thin Solid Films, 2014, 560, 86-93.	1.8	9
342	Energy Research Outlook. <i>What to Look for in 2018</i> . ACS Energy Letters, 2018, 3, 261-263.	17.4	9

#	Article	IF	CITATIONS
343	Hierarchical Coherent Phonons in a Superatomic Semiconductor. Advanced Materials, 2019, 31, e1903209.	21.0	9
344	The nature of the lead-iodine bond in PbI2: A case study for the modelling of lead halide perovskites. Computational and Theoretical Chemistry, 2019, 1164, 112558.	2.5	9
345	Critical Role of Protons for Emission Quenching of Indoline Dyes in Solution and on Semiconductor Surfaces. Journal of Physical Chemistry C, 2020, 124, 21346-21356.	3.1	9
346	Theoretical study of acetylide complexes of early transition metals â€. Journal of the Chemical Society Dalton Transactions, 1997, , 3841-3844.	1.1	8
347	Oxidative addition of SiH4 to Pt(PH3)2: a dynamical density functional study. Chemical Physics Letters, 2002, 364, 87-92.	2.6	8
348	Cr(CO) ₃ â€Activated Diels–Alder Reaction on Singleâ€Wall Carbon Nanotubes: A DFT Investigation. Chemistry - A European Journal, 2009, 15, 4182-4189.	3.3	8
349	Boron Functionalization and Unusual B–C Bond Activation in Rhodium(III) and Iridium(III) Complexes with Diphenylbis(pyrazolylborate) Ligands (Ph ₂ Bp). Organometallics, 2013, 32, 3895-3902.	2.3	8
350	Dynamical Rashba Band Splitting in Hybrid Perovskites Modeled by Local Electric Fields. Journal of Physical Chemistry C, 2018, 122, 124-132.	3.1	8
351	Organic Dyes Containing A Triple Bond Spacer for Dye Sensitized Solar Cells: A Combined Experimental and Theoretical Investigation. Current Organic Chemistry, 2011, 15, 3535-3543.	1.6	8
352	Designing New Indene-Fullerene Derivatives as Electron-Transporting Materials for Flexible Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 27344-27353.	3.1	8
353	A Dynamic Density Functional Study of the Stepwise Migratory Insertion of Isocyanides into Zirconiumâ^ Carbon Bonds Anchored to a Calix[4]arene Moiety. Organometallics, 2002, 21, 4090-4098.	2.3	7
354	Ab Initio Modeling of Solar Cell Dye Sensitizers: The Hunt for Red Photons Continues. European Journal of Inorganic Chemistry, 2019, 2019, 743-750.	2.0	7
355	Interface Electrostatics of Solid-State Dye-Sensitized Solar Cells: A Joint Drift-Diffusion and Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 14955-14963.	3.1	7
356	Thermal Fluctuations on Förster Resonance Energy Transfer in Dyadic Solar Cell Sensitizers: A Combined Ab Initio Molecular Dynamics and TDDFT Investigation. Journal of Physical Chemistry C, 2015, 119, 16490-16499.	3.1	6
357	Perovskite Solar Cells on Their Way to the Market. ACS Energy Letters, 2017, 2, 2640-2641.	17.4	6
358	Glutathione Transferase:  A First-Principles Study of the Active Site. Journal of the American Chemical Society, 2000, 122, 11963-11970.	13.7	5
359	A DFT investigation of base-catalyzed β-elimination reactions in water solution for systems activated by the pyridine ring: Theory vs. experiment. Chemical Physics Letters, 2008, 460, 100-107.	2.6	5
360	Perovskite Solar Cells in the Public Domain as the Community Gears Up for Technical Advances. ACS Energy Letters, 2018, 3, 890-891.	17.4	5

#	Article	IF	CITATIONS
361	Quantitative structureâ€property relationship modeling of small organic molecules for solar cells applications. Journal of Chemometrics, 2018, 32, e2957.	1.3	5
362	Celebrating 10 Years of Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 853-854.	17.4	5
363	DFT studies of β-elimination reactions in water solution with different bases: Theory vs experiment. Computational and Theoretical Chemistry, 2010, 940, 103-114.	1.5	4
364	MAPbI _{3-x} Cl _x mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Materials Research Society Symposia Proceedings, 2014, 1667, 41.	0.1	4
365	Modeling Mesoporous Nanoparticulated TiO2Films through Nanopolyhedra Random Packing. Journal of Physical Chemistry C, 2015, 119, 10716-10726.	3.1	4
366	First-Principles Modeling of Organohalide Thin Films and Interfaces. , 2016, , 19-52.		4
367	A computational approach to the electronic, optical and acid–base properties of Ru(II) dyes for photoelectrochemical solar cells applications. Polyhedron, 2014, 82, 88-103.	2.2	3
368	Functionalized BODIPYs as Tailorâ€Made and Universal Interlayers for Efficient and Stable Organic and Perovskite Solar Cells. Advanced Materials Interfaces, 0, , 2102324.	3.7	3
369	Investigating Charge Dynamics in Halide Perovskite Sensitized Mesostructured Solar Cells. Materials Research Society Symposia Proceedings, 2014, 1667, 7.	0.1	2
370	We Editors Are Authors, Too. ACS Energy Letters, 2019, 4, 249-250.	17.4	2
371	Real Space–Real Time Evolution of Excitonic States Based on the Bethe-Salpeter Equation Method. Journal of Physical Chemistry Letters, 2021, 12, 7261-7269.	4.6	2
372	Chapter 8. First Principles Modeling of Perovskite Solar Cells: Interplay of Structural, Electronic and Dynamical Effects. RSC Energy and Environment Series, 2016, , 234-296.	0.5	2
373	The Revival of Metal-Halide Perovskites Transistors. ACS Energy Letters, 2022, 7, 1490-1491.	17.4	2
374	Phonon Analysis of 2D Organicâ€Halide Perovskites in the Low―and Midâ€IR Region. Advanced Optical Materials, 0, , 2100439.	7.3	2
375	Publishing Hybrid/Organic Photovoltaics Papers in ACS Energy Letters. ACS Energy Letters, 2016, 1, 646-647.	17.4	1
376	A Conversation with Henry Snaith. ACS Energy Letters, 2017, 2, 2552-2554.	17.4	1
377	Evolution of Perovskite Solar Cells: Lessons Learned from Hybrid/Organic Photovoltaics. ACS Energy Letters, 2020, 5, 935-937.	17.4	1
378	Modelling the Interaction between Carboxylic Acids and Zinc Oxide: Insight into Degradation of ZnO Pigments. Molecules, 2022, 27, 3362.	3.8	1

#	Article	IF	CITATIONS
379	Ruthenium sensitizers based on heteroaromatic conjugated bypiridines for dye-sensitized solar cells. Proceedings of SPIE, 2008, , .	0.8	0
380	Science in the Age of Digital Networking. Journal of Physical Chemistry Letters, 2015, 6, 2900-2901.	4.6	0
381	Large polaron evidence in the ultrafast THz response of Lead-Halide Perovskites. EPJ Web of Conferences, 2019, 205, 04019.	0.3	0
382	The dependence of the spectroscopic properties of orcein dyes on solvent proticity: insights from theory and experiments. Physical Chemistry Chemical Physics, 2021, 23, 15329-15337.	2.8	0
383	Energy Spotlight. ACS Energy Letters, 2021, 6, 2635-2637.	17.4	0
384	Enhanced Stability of MAPbI 3 Perovskite Films with Zirconium Phosphateâ€Phosphonomethylglycine Nanosheets as Additive. Advanced Materials Interfaces, 0, , 2101888.	3.7	0
385	From Perovskite Photovoltaics to Perovskite Photocatalysis: New challenges for modeling (and some) Tj ETQq1 1	0.784314	1 rgBT /Over

386 (In-)Stability of Tin Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces. , 0, , .