
Hayat Ullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016146/publications.pdf Version: 2024-02-01

ΗΛΥΛΤΙΙΙΛΗ

#	Article	IF	CITATIONS
1	Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies. Bioorganic Chemistry, 2015, 60, 42-48.	4.1	147
2	Triazinoindole analogs as potent inhibitors of α-glucosidase: Synthesis, biological evaluation and molecular docking studies. Bioorganic Chemistry, 2015, 58, 81-87.	4.1	126
3	Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorganic Chemistry, 2015, 62, 106-116.	4.1	114
4	Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorganic Chemistry, 2015, 62, 15-21.	4.1	109
5	Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents. Bioorganic Chemistry, 2015, 63, 123-131.	4.1	85
6	Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases. Bioorganic Chemistry, 2016, 68, 30-40.	4.1	82
7	Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorganic Chemistry, 2017, 74, 179-186.	4.1	80
8	Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorganic Chemistry, 2017, 72, 248-255.	4.1	75
9	Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 2017, 74, 1-9.	4.1	75
10	Synthesis, α -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorganic Chemistry, 2017, 74, 30-40.	4.1	72
11	Synthesis, β-glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorganic Chemistry, 2016, 68, 56-63.	4.1	66
12	Synthesis of bis-indolylmethanes as new potential inhibitors of β-glucuronidase and their molecular docking studies. European Journal of Medicinal Chemistry, 2018, 143, 1757-1767.	5.5	65
13	Synthesis of 2-acylated and sulfonated 4-hydroxycoumarins: In vitro urease inhibition and molecular docking studies. Bioorganic Chemistry, 2016, 66, 111-116.	4.1	60
14	Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2018, 26, 152-160.	3.0	59
15	Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent β-glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3696-3704.	3.0	58
16	Development of bis-thiobarbiturates as successful urease inhibitors and their molecular modeling studies. Chinese Chemical Letters, 2016, 27, 693-697.	9.0	53
17	Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorganic Chemistry, 2020, 94, 103394.	4.1	51
18	Synthesis of Bis-indolylmethane sulfonohydrazides derivatives as potent α-Glucosidase inhibitors. Bioorganic Chemistry, 2018, 80, 112-120.	4.1	49

Hayat Ullah

#	Article	IF	CITATIONS
19	Synthesis, in vitro urease inhibitory potential and molecular docking study of Benzimidazole analogues. Bioorganic Chemistry, 2019, 89, 103024.	4.1	45
20	New triazinoindole bearing thiazole/oxazole analogues: Synthesis, α-amylase inhibitory potential and molecular docking study. Bioorganic Chemistry, 2019, 92, 103284.	4.1	38
21	In vitro α-glucosidase and α-amylase inhibitory potential and molecular docking studies of benzohydrazide based imines and thiazolidine-4-one derivatives. Journal of Molecular Structure, 2022, 1251, 132058.	3.6	34
22	Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorganic Chemistry, 2018, 78, 58-67.	4.1	33
23	Synthesis of new arylhydrazide bearing Schiff bases/thiazolidinone: α-Amylase, urease activities and their molecular docking studies. Bioorganic Chemistry, 2019, 91, 103112.	4.1	33
24	Synthesis, in vitro urease inhibitory potential and molecular docking study of benzofuran-based-thiazoldinone analogues. Scientific Reports, 2020, 10, 10673.	3.3	33
25	Synthesis, In vitro \hat{I}_{\pm} -Glucosidase Inhibitory Potential and Molecular Docking Studies of 2-Amino-1,3,4-Oxadiazole Derivatives. Medicinal Chemistry, 2020, 16, 724-734.	1.5	31
26	Synthesis, in vitro alpha glucosidase, urease activities and molecular docking study of bis-indole bearing Schiff base analogs. Chemical Data Collections, 2020, 28, 100396.	2.3	29
27	Synthesis, In Vitro α-Amylase Activity, and Molecular Docking Study of New Benzimidazole Derivatives. Russian Journal of Organic Chemistry, 2021, 57, 968-975.	0.8	29
28	The immunomodulation potential of the synthetic derivatives of benzothiazoles: Implications in immune system disorders through in vitro and in silico studies. Bioorganic Chemistry, 2016, 64, 21-28.	4.1	28
29	Aryl-oxadiazole Schiff bases: Synthesis, α-glucosidase in vitro inhibitory activity and their in silico studies. Arabian Journal of Chemistry, 2020, 13, 4904-4915.	4.9	27
30	Synthesis, in-vitro and in-silico studies of triazinoindole bearing bis-Schiff base as β-glucuronidase inhibitors. Journal of Molecular Structure, 2021, 1244, 131003.	3.6	25
31	Synthesis and in vitro study of benzofuran hydrazone derivatives as novel alpha-amylase inhibitor. Bioorganic Chemistry, 2017, 75, 78-85.	4.1	24
32	Synthesis of Novel Triazinoindole-Based Thiourea Hybrid: A Study on α-Glucosidase Inhibitors and Their Molecular Docking. Molecules, 2019, 24, 3819.	3.8	18
33	Synthesis of substituted benzohydrazide derivatives: In vitro urease activities and their molecular docking studies. Chemical Data Collections, 2021, 36, 100778.	2.3	15
34	Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Critical Reviews in Analytical Chemistry, 2024, 54, 44-60.	3.5	15
35	Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments. Critical Reviews in Analytical Chemistry, 0, , 1-21.	3.5	12
36	Synthesis of triazinoindole bearing sulfonamide derivatives, in vitro α-amylase activity and their molecular docking study. Chemical Data Collections, 2022, 39, 100875.	2.3	11

#	Article	IF	CITATIONS
37	Synthesis, in vitro thymidine phosphorylase activity and molecular docking study of thiadiazole bearing isatin analogs. Chemical Papers, 2022, 76, 213-224.	2.2	10
38	Antimicrobial Susceptibility of Pseudomonas aeruginosa Isolated from Hospital Environment. Abasyn Journal of Life Sciences, 2021, , 40-50.	0.1	0