
Magdalena Polak-Berecka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie Van Leeuwenhoek, 2014, 106, 751-762.	0.7	103
2	The first report of the physicochemical structure of chitin isolated from Hermetia illucens. International Journal of Biological Macromolecules, 2016, 92, 316-320.	3.6	97
3	Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydrate Polymers, 2015, 117, 501-509.	5.1	67
4	Utilization of brewery wastes in food industry. PeerJ, 2020, 8, e9427.	0.9	66
5	The State of Research on Antimicrobial Activity of Cold Plasma. Polish Journal of Microbiology, 2019, 68, 153-164.	0.6	52
6	Bifidogenic and Antioxidant Activity of Exopolysaccharides Produced by Lactobacillus rhamnosus E/N Cultivated on Different Carbon Sources. Polish Journal of Microbiology, 2013, 62, 181-188.	0.6	48
7	Isolation and characterization of a new fructophilic Lactobacillus plantarum FPL strain from honeydew. Annals of Microbiology, 2018, 68, 459-470.	1.1	34
8	The effect of moonlighting proteins on the adhesion and aggregation ability of Lactobacillus helveticus. Anaerobe, 2014, 30, 161-168.	1.0	31
9	Biosorption of Al ⁺³ and Cd ⁺² by an Exopolysaccharide from <i>Lactobacillus rhamnosus</i> . Journal of Food Science, 2014, 79, T2404-8.	1.5	30
10	Variability of S-layer proteins in Lactobacillus helveticus strains. Anaerobe, 2014, 25, 53-60.	1.0	28
11	PURIFICATION AND CHARACTERIZATION OF PULLULANASE FROM <i>Lactococcus lactis</i> . Preparative Biochemistry and Biotechnology, 2011, 41, 252-261.	1.0	24
12	Evolution of the anticholinesterase, antioxidant, and anti-inflammatory activity of Epilobium angustifolium L. infusion during in vitro digestion. Journal of Functional Foods, 2021, 85, 104645.	1.6	21
13	Composition of lactic acid bacteria during spontaneous curly kale (Brassica oleracea var. sabellica) fermentation. Microbiological Research, 2018, 206, 121-130.	2.5	20
14	Study on Biological Activity of Bread Enriched with Natural Polyphenols in Terms of Growth Inhibition of Tumor Intestine Cells. Journal of Medicinal Food, 2020, 23, 181-190.	0.8	20
15	Fermented curly kale as a new source of gentisic and salicylic acids with antitumor potential. Journal of Functional Foods, 2020, 67, 103866.	1.6	20
16	The role of ferulic acid esterase in the growth of Lactobacillus helveticus in the presence of phenolic acids and their derivatives. European Food Research and Technology, 2014, 238, 299-306.	1.6	19
17	New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods, 2021, 10, 1603.	1.9	17
18	Bifidogenic and antioxidant activity of exopolysaccharides produced by Lactobacillus rhamnosus E/N cultivated on different carbon sources. Polish Journal of Microbiology, 2013, 62, 181-8.	0.6	11

Magdalena Polak-Berecka

#	Article	IF	CITATIONS
19	The Plackett-Burman design in optimization of media components for biomass production ofLactobacillus rhamnosusOXY. Acta Biologica Hungarica, 2010, 61, 344-355.	0.7	10
20	Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N. Brazilian Journal of Microbiology, 2011, 42, 1485-1494.	0.8	10
21	Studies on the removal of Cd ions by gastrointestinal lactobacilli. Applied Microbiology and Biotechnology, 2017, 101, 3415-3425.	1.7	10
22	Morphological and physiological changes in Lentilactobacillus hilgardii cells after cold plasma treatment. Scientific Reports, 2020, 10, 18882.	1.6	10
23	Starter culture for curly kale juice fermentation selected using principal component analysis. Food Bioscience, 2020, 35, 100602.	2.0	9
24	A New Protein of Î \pm -Amylase Activity from Lactococcus lactis. Journal of Microbiology and Biotechnology, 2010, 20, 1307-1313.	0.9	9
25	The impact of cold plasma on the phenolic composition and biogenic amine content of red wine. Food Chemistry, 2022, 381, 132257.	4.2	8
26	Biological Activity of an Epilobium angustifolium L. (Fireweed) Infusion after In Vitro Digestion. Molecules, 2022, 27, 1006.	1.7	8
27	Genetic mechanisms of variation in erythromycin resistance in Lactobacillus rhamnosus strains. Journal of Antibiotics, 2012, 65, 583-586.	1.0	7
28	Optimization of medium composition for enhancing growth of Lactobacillus rhamnosus PEN using response surface methodology. Polish Journal of Microbiology, 2010, 59, 113-8.	0.6	6
29	Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N. Brazilian Journal of Microbiology, 2011, 42, 1485-94.	0.8	3
30	Possibility of Using Fermented Curly Kale Juice to Manufacture Feta-Type Cheese. Applied Sciences (Switzerland), 2020, 10, 4020.	1.3	2
31	Genome and Pangenome Analysis of Lactobacillus hilgardii FLUB—A New Strain Isolated from Mead. International Journal of Molecular Sciences, 2021, 22, 3780.	1.8	2
32	Innovative Technologies in Sustainable Food Production: Cold Plasma Processing. , 2021, , 165-177.		0
33	Plantarycyny – biosynteza, mechanizm dziaÅ,ania i potencjaÅ, w zapewnianiu bezpieczeÅ"stwa żywnoÅ›ci. Żywność, 2020, 123, 38-49.	0.2	0
34	Potential Biological Activities of Peptides Generated during Casein Proteolysis by Curly Kale (Brassica) Tj ETQq0 0	0_rgBT /C	verlock 10 T

34

3