Alex J Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9015990/publications.pdf Version: 2024-02-01

Διεν Ι \λ/λιςμ

#	Article	IF	CITATIONS
1	Identification of rare cell populations in autofluorescence lifetime image data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 497-506.	1.1	7
2	In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish. ELife, 2022, 11, .	2.8	19
3	Design and Implementation of Privilege for Sale, a JEDI Activity for a Biomedical Engineering Introductory Course. Biomedical Engineering Education, 2022, 2, 183-188.	0.6	2
4	Classification of T-cell activation via autofluorescence lifetime imaging. Nature Biomedical Engineering, 2021, 5, 77-88.	11.6	92
5	Extracellular pH affects the fluorescence lifetimes of metabolic co-factors. Journal of Biomedical Optics, 2021, 26, .	1.4	9
6	Carbomer-based adjuvant elicits CD8 T-cell immunity by inducing a distinct metabolic state in cross-presenting dendritic cells. PLoS Pathogens, 2021, 17, e1009168.	2.1	19
7	Autofluorescence Imaging to Evaluate Cellular Metabolism. Journal of Visualized Experiments, 2021, , .	0.2	3
8	Classifying T cell activity in autofluorescence intensity images with convolutional neural networks. Journal of Biophotonics, 2020, 13, e201960050.	1.1	20
9	Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells. Biomedical Optics Express, 2020, 11, 5674.	1.5	15
10	Imaging intratumoral metabolic heterogeneity. Nature Biomedical Engineering, 2019, 3, 333-334.	11.6	3
11	Zebrafish xenograft breast cancer models for high-throughput drug response screening. , 2019, , .		0
12	Autofluorescence imaging identifies tumor cellâ€cycle status on a singleâ€cell level. Journal of Biophotonics, 2018, 11, e201600276.	1.1	35
13	Mutant KRAS Exosomes Alter the Metabolic StateÂofÂRecipient ColonicÂEpithelial Cells. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 627-629.e6.	2.3	27
14	Fluorescence lifetime imaging of calcium flux in neurons in response to pulsed infrared light. , 2017, , .		3
15	Functional Optical Imaging of Primary Human Tumor Organoids: Development of a Personalized Drug Screen. Journal of Nuclear Medicine, 2017, 58, 1367-1372.	2.8	33
16	Density-based clustering analyses to identify heterogeneous cellular sub-populations. , 2017, , .		1
17	Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed. Biomedical Optics Express, 2016, 7, 1385.	1.5	33
18	Optical Imaging of Drug-Induced Metabolism Changes in Murine and Human Pancreatic Cancer Organoids Reveals Heterogeneous Drug Response. Pancreas, 2016, 45, 863-869.	0.5	105

Alex J Walsh

#	Article	IF	CITATIONS
19	Action potential block in neurons by infrared light. Neurophotonics, 2016, 3, 040501.	1.7	31
20	Drug response in organoids generated from frozen primary tumor tissues. Scientific Reports, 2016, 6, 18889.	1.6	81
21	Temporal and spatial binning of TCSPC data to improve signal-to-noise ratio and imaging speed. , 2016, , .		1
22	Imaging Cellular Metabolic Heterogeneity in Cancer. , 2016, , .		0
23	Differentiating quiescent cancer cell populations in heterogeneous samples with fluorescence lifetime imaging. , 2016, , .		0
24	In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment. Neoplasia, 2015, 17, 862-870.	2.3	82
25	Blind deconvolution estimation of fluorescence measurements through quadratic programming. Journal of Biomedical Optics, 2015, 20, 075010.	1.4	7
26	High-throughput measurements of the optical redox ratio using a commercial microplate reader. Journal of Biomedical Optics, 2015, 20, 010503.	1.4	21
27	Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts. Journal of Biomedical Optics, 2015, 20, 026004.	1.4	32
28	Optical metabolic imaging quantifies heterogeneous cell populations. Biomedical Optics Express, 2015, 6, 559.	1.5	78
29	Deconvolution of fluorescence lifetime imaging microscopy by a library of exponentials. Optics Express, 2015, 23, 23748.	1.7	13
30	Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer. Gastroenterology, 2015, 149, 1932-1943.e9.	0.6	151
31	Fluorescence Lifetime Measurements of NAD(P)H in Live Cells and Tissue. Springer Series in Chemical Physics, 2015, , 435-456.	0.2	4
32	An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images. Proceedings of SPIE, 2014, , .	0.8	23
33	In vivo hyperspectral imaging of microvessel response to trastuzumab treatment in breast cancer xenografts. Biomedical Optics Express, 2014, 5, 2247.	1.5	37
34	Quantitative Optical Imaging of Primary Tumor Organoid Metabolism Predicts Drug Response in Breast Cancer. Cancer Research, 2014, 74, 5184-5194.	0.4	251
35	Optical Metabolic Imaging of Treatment Response in Human Head and Neck Squamous Cell Carcinoma. PLoS ONE, 2014, 9, e90746.	1.1	72
36	Quantitative Autofluorescence Imaging Measures Early Response to Head and Neck Cancer Treatment In Vivo. , 2014, , .		0

Alex J Walsh

#	Article	IF	CITATIONS
37	Optical Metabolic Imaging Identifies Glycolytic Levels, Subtypes, and Early-Treatment Response in Breast Cancer. Cancer Research, 2013, 73, 6164-6174.	0.4	268
38	Quantitative optical imaging of vascular response in vivo in a model of peripheral arterial disease. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1168-H1180.	1.5	16
39	Optical imaging of metabolism in HER2 overexpressing breast cancer cells. Biomedical Optics Express, 2012, 3, 75.	1.5	70
40	<i>Ex vivo</i> optical metabolic measurements from cultured tissue reflect <i>in vivo</i> tissue status. Journal of Biomedical Optics, 2012, 17, 116015.	1.4	43
41	The effect of temperature on the autofluorescence of scattering and nonâ€scattering tissue. Lasers in Surgery and Medicine, 2012, 44, 712-718.	1.1	8
42	Development of Spectral Markers for the Discrimination of Ulcerative Colitis and Crohn's Disease Using Raman Spectroscopy. Diseases of the Colon and Rectum, 2011, 54, 48-53.	0.7	37
43	Variation of fluorescence in tissue with temperature. Lasers in Surgery and Medicine, 2011, 43, 36-42.	1.1	9