
Joakim Halldin Stenlid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9015706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stabilization of Cu ₂ 0 through Site-Selective Formation of a Co ₁ Cu Hybrid Single-Atom Catalyst. Chemistry of Materials, 2022, 34, 2313-2320.	3.2	5
2	Catalytic Performance and Near-Surface X-ray Characterization of Titanium Hydride Electrodes for the Electrochemical Nitrate Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 5739-5744.	6.6	31
3	Vernier template synthesis of molecular knots. Science, 2022, 375, 1035-1041.	6.0	31
4	Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products. Nature Communications, 2022, 13, 1399.	5.8	56
5	The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science, 2022, 376, 603-608.	6.0	65
6	Chemisorbed oxygen or surface oxides steer the selectivity in Pd electrocatalytic propene oxidation observed by <i>operando</i> Pd L-edge X-ray absorption spectroscopy. Catalysis Science and Technology, 2021, 11, 3347-3352.	2.1	6
7	Properties of interfaces between copper and copper sulphide/oxide films. Corrosion Science, 2021, 183, 109313.	3.0	9
8	The Role of Roughening to Enhance Selectivity to C ₂₊ Products during CO ₂ Electroreduction on Copper. ACS Energy Letters, 2021, 6, 3252-3260.	8.8	38
9	Acetic acid conversion to ketene on Cu2O(1 0 0): Reaction mechanism deduced from experimental observations and theoretical computations. Journal of Catalysis, 2021, 402, 154-165.	3.1	3
10	Exploring Trends on Coupling Mechanisms toward C ₃ Product Formation in CO ₍₂₎ R. Journal of Physical Chemistry C, 2021, 125, 26437-26447.	1.5	18
11	Modeling Potential-Dependent Electrochemical Activation Barriers: Revisiting the Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 19341-19355.	6.6	25
12	Electrochemical Interface during Corrosion of Copper in Anoxic Sulfide-Containing Groundwater—A Computational Study. Journal of Physical Chemistry C, 2020, 124, 469-481.	1.5	8
13	Photodriven CO dimerization on Cu ₂ O from an electronic-structure perspective. Sustainable Energy and Fuels, 2020, 4, 670-677.	2.5	0
14	Uncovering the electrochemical interface of low-index copper surfaces in deep groundwater environments. Electrochimica Acta, 2020, 362, 137111.	2.6	5
15	Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nature Communications, 2020, 11, 6181.	5.8	80
16	Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2020, 142, 14481-14494.	6.6	25
17	Tying different knots in a molecular strand. Nature, 2020, 584, 562-568.	13.7	74
18	Utilizing the Surface Electrostatic Potential to Predict the Interactions of Pt and Ni Nanoparticles with Lewis Acids and Bases—σ-Lumps and σ-Holes Govern the Catalytic Activities. Journal of Physical Chemistry C, 2020, 124, 14696-14705.	1.5	13

#	Article	IF	CITATIONS
19	The Surface Structure of Cu2O(100): Nature of Defects. Journal of Physical Chemistry C, 2019, 123, 7696-7704.	1.5	13
20	Adsorption and Decomposition of Ethanol on Cu ₂ O(111) and (100). Journal of Physical Chemistry C, 2019, 123, 20384-20392.	1.5	11
21	Ab Initio Cyclic Voltammetry on Cu(111), Cu(100) and Cu(110) in Acidic, Neutral and Alkaline Solutions. ChemPhysChem, 2019, 20, 3096-3105.	1.0	48
22	The local electron attachment energy and the electrostatic potential as descriptors of surface–adsorbate interactions. Physical Chemistry Chemical Physics, 2019, 21, 17001-17009.	1.3	10
23	High-Density Isolated Fe ₁ O ₃ Sites on a Single-Crystal Cu ₂ O(100) Surface. Journal of Physical Chemistry Letters, 2019, 10, 7318-7323.	2.1	8
24	Interaction of Atomic Hydrogen with the Cu ₂ O(100) and (111) Surfaces. Journal of Physical Chemistry C, 2019, 123, 22172-22180.	1.5	13
25	On the Nature of the Cathodic Reaction during Corrosion of Copper in Anoxic Sulfide Solutions. Journal of the Electrochemical Society, 2019, 166, C196-C208.	1.3	6
26	The Molecular Surface Property Approach: A Guide to Chemical Interactions in Chemistry, Medicine, and Material Science. Advanced Theory and Simulations, 2019, 2, 1800149.	1.3	36
27	Chemical Reactivity: The Molecular Surface Property Approach: A Guide to Chemical Interactions in Chemistry, Medicine, and Material Science (Adv. Theory Simul. 1/2019). Advanced Theory and Simulations, 2019, 2, 1970003.	1.3	1
28	Amorphous, Periodic Model of a Copper Electrocatalyst with Subsurface Oxygen for Enhanced CO Coverage and Dimerization. Journal of Physical Chemistry C, 2019, 123, 4961-4968.	1.5	13
29	Theoretical Investigation into Rate-Determining Factors in Electrophilic Aromatic Halogenation. Journal of Physical Chemistry A, 2018, 122, 3270-3279.	1.1	22
30	Mechanism and regioselectivity of electrophilic aromatic nitration in solution: the validity of the transition state approach. Journal of Molecular Modeling, 2018, 24, 15.	0.8	29
31	Ïf-Holes and Ïf-lumps direct the Lewis basic and acidic interactions of noble metal nanoparticles: introducing regium bonds. Physical Chemistry Chemical Physics, 2018, 20, 2676-2692.	1.3	99
32	Nucleophilic Aromatic Substitution Reactions Described by the Local Electron Attachment Energy. Journal of Organic Chemistry, 2017, 82, 3072-3083.	1.7	38
33	Interaction of Sulfur Dioxide and Near-Ambient Pressures of Water Vapor with Cuprous Oxide Surfaces. Journal of Physical Chemistry C, 2017, 121, 24011-24024.	1.5	11
34	On the Kinetic and Thermodynamic Properties of Aryl Radicals Using Electrochemical and Theoretical Approaches. ChemElectroChem, 2017, 4, 3212-3221.	1.7	12
35	Computational analysis of the early stage of cuprous oxide sulphidation: a top-down process. Corrosion Engineering Science and Technology, 2017, 52, 50-53.	0.7	13
36	Extending the σ-Hole Concept to Metals: An Electrostatic Interpretation of the Effects of Nanostructure in Gold and Platinum Catalysis. Journal of the American Chemical Society, 2017, 139, 11012-11015.	6.6	136

#	Article	IF	CITATIONS
37	Local Lewis Acidity of (TiO ₂) _{<i>n</i>} (<i>n</i> = 7–10) Nanoparticles Characterized by DFT-Based Descriptors: Tools for Catalyst Design. Journal of Physical Chemistry C, 2017, 121, 27483-27492.	1.5	14
38	Dehydrogenation of methanol on Cu2O(100) and (111). Journal of Chemical Physics, 2017, 146, 244702.	1.2	23
39	Ïf-Holes on Transition Metal Nanoclusters and Their Influence on the Local Lewis Acidity. Crystals, 2017, 7, 222.	1.0	16
40	Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding. Journal of Physical Chemistry A, 2016, 120, 10023-10032.	1.1	27
41	Reactivity at the Cu ₂ O(100):Cu–H ₂ O interface: a combined DFT and PES study. Physical Chemistry Chemical Physics, 2016, 18, 30570-30584.	1.3	21
42	Aqueous Solvation and Surface Oxidation of the Cu ₇ Nanoparticle: Insights from Theoretical Modeling. Journal of Physical Chemistry C, 2016, 120, 1977-1988.	1.5	12
43	The Surface Structure of Cu ₂ O(100). Journal of Physical Chemistry C, 2016, 120, 4373-4381.	1.5	46
44	Searching for the thermodynamic limit – a DFT study of the step-wise water oxidation of the bipyramidal Cu ₇ cluster. Physical Chemistry Chemical Physics, 2014, 16, 2452-2464.	1.3	24
45	Poly(styrene) Resin‧upported Cobalt(III) Salen Cyclic Oligomers as Active Heterogeneous HKR Catalysts. Advanced Synthesis and Catalysis, 2012, 354, 3016-3024.	2.1	8