Yasushi Idemoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9015696/publications.pdf

Version: 2024-02-01

136	1,511	17 h-index	33
papers	citations		g-index
136	136	136	1353
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. Journal of Power Sources, 2003, 119-121, 125-129.	7.8	164
2	Title is missing!. Biotechnology Letters, 2001, 23, 1709-1714.	2.2	128
3	Xâ€ray Crystal Structure Analysis of Sodiumâ€lon Conductivity in 94 Na ₃ PS ₄ â<6 Na ₄ SiS ₄ Glassâ€Ceramic Electroly ChemElectroChem, 2014, 1, 1130-1132.	rte 3. 4	85
4	Oxygen nonstoichiometry of 2223 phase Bi-Pb-Sr-Ca-Cu-O system superconducting oxide. Physica C: Superconductivity and Its Applications, 1991, 181, 171-178.	1.2	70
5	Thermodynamic stability, crystal structure, and cathodic performance of Lix(Mn1/3Co1/3Ni1/3)O2 depend on the synthetic process and Li content. Solid State Ionics, 2008, 179, 625-635.	2.7	68
6	Mechanochemically Prepared Li ₂ S–P ₂ S ₅ –LiBH ₄ Solid Electrolytes with an Argyrodite Structure. ACS Omega, 2018, 3, 5453-5458.	3.5	41
7	Crystal structural change during charge?discharge process of LiMnNiO as cathode material for 5 V class lithium secondary battery. Solid State Ionics, 2005, 176, 299-306.	2.7	35
8	Relation between crystal structures, electronic structures, and electrode performances of LiMn2â^'xMxO4 (M = Ni, Zn) as a cathode active material for 4V secondary Li batteries. Journal of Power Sources, 2003, 119-121, 733-737.	7.8	31
9	Effect of High-Pressure Oxygen Annealing on Bi2SiO5-Added Ferroelectric Thin Films. Japanese Journal of Applied Physics, 2002, 41, L1164-L1166.	1.5	30
10	The atomic structure of a MgCo ₂ O ₄ nanoparticle for a positive electrode of a Mg rechargeable battery. Chemical Communications, 2019, 55, 2517-2520.	4.1	29
11	Li and Li-Al Negative Electrode Characteristics for the Lithium Secondary Battery with a Nonflammable SOCl ₂ , Li Added, LiCl Saturated AlCl ₃ -EMIC Molten Salt Electrolyte. Electrochemistry, 1999, 67, 706-712.	1.4	29
12	Relation between Property and Electrode Characteristics of LiMn _{2â^²} <i>_x</i> Mg <i>_x</i> O ₄ Positive Electrode Material for the Lithium Secondary Battery. Electrochemistry, 1999, 67, 235-237.	1.4	23
13	Crystal and electronic structure change determined by various method for delithiation process of Lix(Ni,Mn)O2-based cathode material. Journal of Power Sources, 2011, 196, 6651-6656.	7.8	23
14	Improvement of cathode performance of LiMn2O4 as a cathode active material for Li ion battery by step-by-step supersonic-wave treatments. Journal of Power Sources, 2009, 189, 114-120.	7.8	20
15	Defect Thermodynamics of (La1-xSrx)2CuO4-δSuperconducting Oxide. Japanese Journal of Applied Physics, 1990, 29, 2725-2728.	1.5	19
16	Thermodynamic Stability and Cathode Performance of Li1+xMn2-xO4 as a Cathode Active Material for Lithium Secondary Battery Journal of the Ceramic Society of Japan, 2000, 108, 848-853.	1.3	18
17	Synthesis, electrochemical properties, and changes in crystal and electronic structures during charge/discharge process of spinel-type cathode materials Mg4V5-xNixO12 ($x = 0, 0.3, 0.6, 1.0$) for magnesium secondary batteries. Journal of Power Sources, 2020, 455, 227962.	7.8	17
18	Structural and electronic properties of spinel type Mg1+yCo2-x-yMnxO4 for cathode applications in magnesium rechargeable batteries. Journal of Power Sources, 2021, 482, 228920.	7.8	17

#	Article	IF	CITATIONS
19	Crystal and electronic structure analysis and thermodynamic stabilities for electrochemically or chemically delithiated Li1.2â^'xMn0.54Ni0.13Co0.13O2. Journal of Power Sources, 2016, 319, 255-261.	7.8	16
20	Semireduction of Alkynes Using Formic Acid with Reusable Pd-Catalysts. Journal of Organic Chemistry, 2018, 83, 13574-13579.	3.2	16
21	Synthesis, Crystal Structure Analysis, and Electrochemical Properties of Rock-Salt Type Mg _{<i>x</i>} Ni _{<i>y</i>} Co _{<i>z</i>} O ₂ as a Cathode Material for Mg Rechargeable Batteries. Inorganic Chemistry, 2019, 58, 5664-5670.	4.0	16
22	Thermodynamic Investigation and Cathode Performance of Li-Mn-O Spinel System as Cathode Active Material for Lithium Secondary Battery Journal of the Ceramic Society of Japan, 2001, 109, 771-776.	1.3	15
23	Property, Electronic and Crystal Structures, Thermodynamic Stability, and Cathode Performance of Li, (Mn, Co, Ni, M) O2 (M=Al, Ti, Fe) as a Cathode Active Material for Li Secondary Battery. Electrochemistry, 2007, 75, 791-799.	1.4	15
24	Dependence of property, crystal structure and electrode characteristics on Li content for LixNi0.8Co0.2O2 as a cathode active material for Li secondary battery. Journal of Power Sources, 2009, 189, 269-278.	7.8	15
25	Crystal Structure Analysis and Electrochemical Properties of Chemically Delithiated Li _{0.13} Mn _{0.54} Ni _{0.13} Co _{0.13} O _{2â^'} <i>_{Î<th>præ/i></th><th>15</th>}</i>	præ/i>	15
26	Crystal and Electronic Structures of MgCo2â^'xMnxO4 as Cathode Material for Magnesium Secondary Batteries Using First-Principles Calculations and Quantum Beam Measurements. Bulletin of the Chemical Society of Japan, 2019, 92, 1950-1959.	3.2	15
27	Thermodynamic study on the Y-Ba-Cu-O system by the EMF method. Physica C: Superconductivity and Its Applications, 1992, 199, 207-216.	1.2	14
28	Correlation between structure and mixed ionic–electronic conduction mechanism for (La _{1â^x} Sr _x)CoO _{3â^î^(} using synchrotron X-ray analysis and first principles calculations. Journal of Materials Chemistry A, 2015, 3, 6943-6953.	10.3	14
29	Synthesis, Crystal Structure and Electrode Properties of Spinel-Type MgCo _{2â^'} <i></i> Mn <i>_x< Electrochemistry, 2019, 87, 220-228.</i>	t』/i>O&	.l t; sub>4
30	Zeta Potential of Various Oxide Particles and the Charging Mechanism Journal of the Ceramic Society of Japan, 1999, 107, 119-122.	1.3	13
31	Average and Local Structure Analyses of Li(Mn _{1/3} Ni _{1/3} Using Neutron and Synchrotron X-ray Sources. Journal of the Electrochemical Society, 2012, 159, A673-A677.	2.9	13
32	Investigation on Crystal and Electronic Structures of 0.5Li2MnO3-0.5LiMnxNixCo(1^{-} minus;2x)O2 (x =) Tj ETQq0	0,0,0 rgBT 1.4	Qverlock
33	Composition dependence of average and local structure of xLi(Li1/3Mn2/3)O2–(1Ââ~Âx)Li(Mn1/3Ni1/3Co1/3)O2 active cathode material for Li ion batteries. Journal of Power Sources, 2014, 259, 195-202.	7.8	13
34	Thermodynamic stability of $(La1\hat{a}^2xMx)2CuOy$ (M = Ba, Sr and Ca) solid solution and the anomaly. Physica C: Superconductivity and Its Applications, 1995, 243, 35-42.	1.2	12
35	Change in Local Structure of 0.4Li2MnO3–0.6LiMn1/3Ni1/3Co1/3O2 During First Discharge Process. Electrochimica Acta, 2015, 153, 399-408.	5.2	12
36	Change in Crystal Structure of LiNi0.8Co0.19Cu0.01O2 Cathode during Charge of Coin Cell Observed by Ex Situ Time-of-flight Neutron Diffraction. Chemistry Letters, 2011, 40, 168-170.	1.3	11

#	Article	IF	CITATIONS
37	Local structure change around Co and Fe ions in (La0.6Sr0.4)(Co0.2Fe0.8)O3â^ as revealed by in–situ X–ray absorption spectroscopy and first–principles calculation. Journal of Solid State Chemistry, 2018, 258, 702-711.	2.9	11
38	Thermodynamic Stability and Crystal Structure Dependence of Li Content for Li _x Mn _{2-y} M _y O ₄ (M = Mg, Al, Cr, Mn) as a Cathode Active Material for Li Secondary Battery. Electrochemistry, 2004, 72, 680-687.	1.4	11
39	Dependence of property, cathode characteristics, thermodynamic stability, and average and local structures on heat-treatment condition for LiNi0.5Mn0.5O2 as a cathode active material for Li-ion battery. Electrochimica Acta, 2011, 56, 9453-9458.	5.2	10
40	Average and Local Crystal Structure and Electronic Structure of 0.4Li ₂ MnO ₃ -0.6LiMn _{1/3} Ni _{1 Using First-principles Calculations and Neutron Beam and Synchrotron X-Ray Sources. Electrochemistry, 2015, 83, 879-884.}	/31.4	gt;Ç <u>0</u> <sub&
41	Characterization, average and electronic structures during charge–discharge cycle in 0.6Li2MnO3–0.4Li(Co1/3Ni1/3Mn1/3)O2 solid solution of a cathode active material for Li-ion battery. Journal of Power Sources, 2015, 273, 1023-1029.	7.8	10
42	Change of local structures for 0.5Li2MnO3–0.5LiMn1/3Ni1/3Co1/3O2 in first charge process of different rates. Journal of Materials Science, 2017, 52, 8630-8649.	3.7	10
43	Synthesis, Electrochemical Properties and Changes of Crystal and Electronic Structures in Charge/Discharge Process of Spinel Type Cathode-Materials Mg(Mg _{0.5} V _{1.5â^*} <i>_x</i> Ni <i>_xx</i> (<i>x</i>)0 ₄ (<i>x</i>)1> = 0. 0.1. 0.2. 0.3) for Magnesium Secondary Batteries. Electrochemistry, 2019, 87, 281-288.	1.4	10
44	Electronic structure of (Nd, Ce)2(Ba, Nd)2Cu3Oy. Physica C: Superconductivity and Its Applications, 1993, 210, 315-324.	1.2	9
45	EMF study on thermodynamic instability and anomaly of $(La1\hat{a}^*xMx)2CuO4\hat{a}^*\hat{l}^*$ (M = Ba, Sr and Ca) solid solution. Physica C: Superconductivity and Its Applications, 1995, 243, 43-52.	1.2	9
46	Electrophoretic Deposition and the Deposition Mechanism of Tl-2223 Superconducting Powder. Journal of the Ceramic Society of Japan, 1997, 105, 351-355.	1.3	9
47	Preparation of Zeolite Films Using Electrophoretic Deposition Method Journal of the Ceramic Society of Japan, 1999, 107, 437-441.	1.3	9
48	Crystal Structure and Ferroelectric Properties of Si Added SrBi2Ta2O9. Japanese Journal of Applied Physics, 2006, 45, 5091-5097.	1.5	9
49	Atomic-Configuration Analysis on LiNi _{0.5} Mn _{0.5} O ₂ by Reverse Monte Carlo Simulation. Electrochemistry, 2016, 84, 789-792.	1.4	9
50	Study of atomic ordering across the layer in lithium-rich layered positive electrode material towards preparation process optimization. Journal of Power Sources, 2019, 437, 226905.	7.8	9
51	Oxygen Content and Electrode Characteristics of LiMn _{1.5} Ni _{0.5} O ₄ as a 5 V Class Cathode Material for Lithium Secondary Battery. Electrochemistry, 2002, 70, 587-589.	1.4	9
52	Effect of Heat Treatment for Crystal Structure and Ferroelectric Properties of Sr1-xBi2+xTa2O9DELTA.(x=0, 0.2) Journal of the Ceramic Society of Japan, 2002, 110, 859-866.	1.3	8
53	Li Content Dependence of Thermodynamic Stability and the Crystal Structure of Li _x Mn _{1$\frac{1}{4}$y} M _y O ₂ (M = Mn, Al, Cu) as a Cathode Active Material for Li Secondary Battery. Electrochemistry, 2005, 73, 823-829.	1.4	8
54	Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O3. Journal of Solid State Chemistry, 2014, 210, 275-279.	2.9	8

#	Article	IF	CITATIONS
55	Local Structure in A-site-deficient Perovskite Na _{0.5} Bi _{0.5} TiO ₃ and Its Effect on Electrical Conduction. Chemistry Letters, 2019, 48, 1398-1401.	1.3	8
56	Average, electronic, and local structures of LiMn2-xAlxO4 in charge-discharge process by neutron and synchrotron X-ray. Journal of Power Sources, 2019, 410-411, 38-44.	7.8	8
57	Relation between Cycle Performances and Electronic States of LiMn ₂₋ <i>_x</i> M <i>_x</i> D ₄ (M = Mn, Mg, Al, Co, Ni,) Tj ET Electrochemistry, 2004, 72, 20-26.	「Qq1 1 0.78	34314 rgBT /(
58	Relation between the Crystal Structure, Physical Properties and Ferroelectric Properties of PbZrxTi1-xO3(x=0.40, 0.45, 0.53) Ferroelectric Material by Heat Treatment. Journal of the Ceramic Society of Japan, 2004, 112, 40-45.	1.3	7
59	Dependence of Crystal Structure and Ferroelectric Properties on Composition and Heat Treatment for Sr-Bi-Ta-Si-O Ferroelectric Material. Journal of the Ceramic Society of Japan, 2006, 114, 630-637.	1.3	7
60	Crystal and Electronic Structures and High Temperature Protonic Conduction of LaBaGa0.95Mg0.05O4DELTA Electrochemistry, 2009, 77, 158-160.	1.4	7
61	Study of Mechanism of Mixed Conduction Due to Electrons and Oxygen lons in (La0.75Sr0.25)MnO3.00 and (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33 through Rietveld Refinement and MEM Analysis. Electrochemistry, 2009, 77, 161-168.	1.4	7
62	Enhanced oxide-ion conductivity of solid-state electrolyte mesocrystals. Nanoscale, 2019, 11, 4523-4530.	5 . 6	7
63	The Ca Substitution and Oxygen Content of the Bi ₂ Sr ₂ (Ca _{<i>x</i>} Y <sub&g System and Its Standard Enthalpies of. Journal of the Ceramic Society of Japan, 1997, 105, 795-800.</sub&g 	t;1-& ll: ;i>	;x&dt/i><
64	Effects of supersonic treatment on the electrochemical properties and crystal structure of LiMn1.5Ni0.5O4 as a cathode material for Li ion batteries. Journal of Power Sources, 2011, 196, 10126-10132.	7.8	6
65	Crystal and Electronic Structure Analyses on Bi ₂ SiO ₅ â€Added SrBi ₂ (Ta _{1â^'<i>x</i>} Nb _{<i>x</i>}) ₂ O ₉ by Using Pulsed Neutron and Synchrotron Xâ€Ray Sources. Journal of the American Ceramic Society, 2012, 95, 3906-3911.	3 . 8	6
66	Crystal Structure Analysis in the Charge and Discharge Process of Li-ion Battery Cathode-material LiNi _{0.8} Co _{0.2} O ₂ . Electrochemistry, 2016, 84, 802-807.	1.4	6
67	Effect of operating temperature on local structure during first discharge of 0.4Li2MnO3-0.6LiMn1/3Ni1/3Co1/3O2 electrodes. Journal of Power Sources, 2018, 378, 198-208.	7.8	6
68	Removal of strontium from aqueous solutions using scallop shell powder. Journal of the Ceramic Society of Japan, 2019, 127, 111-116.	1.1	6
69	Determining the crystal and electronic structures of the magnesium secondary battery cathode material MgCo2â^xMnxO4 using first-principles calculations and a quantum beam during discharge. Journal of Materials Science, 2020, 55, 13852-13870.	3.7	6
70	Revisiting Delithiated Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} Co _{0.13} Co _{O.13} O.13O.	lt;/sub>(D ₂
71	Thermodynamic Stability and Cathode Performance of LiMn _{2-x} Ni _x O ₄ as an Active Material for Li Secondary Battery. Electrochemistry, 2004, 72, 557-563.	1.4	6
72	Oxygen-content dependence of crystal structure and Tc of (Nd0.675Ce0.325)2(Ba0.664Nd0.336)2Cu3.00Oy. Physica C: Superconductivity and Its Applications, 2000, 329, 29-36.	1.2	5

#	Article	IF	CITATIONS
73	Charging Mechanism of Tl-2223 Superconducting Oxide Particles in Electrophoretic Deposition Bath Journal of the Ceramic Society of Japan, 2001, 109, 294-298.	1.3	5
74	Li Content Dependence of Crystal Structure and Electronic Structure for Chemical Delithiation of Li _x Mn _{/sub>4} (M = Mg, Al, Cr, Mn, Co, Zn, Ni) as a Cathode Active Material for Li Secondary Battery. Electrochemistry, 2004, 72, 755-762.	1.4	5
75	Effects of excess oxygen content on the hole-carrying CuO2-layers in Tl2(Ba1â^'xSrx)2Ca2Cu3Oy superconducting oxides. Solid State Communications, 2004, 131, 513-517.	1.9	5
76	Changes of Crystal Structure and Ferroelectric Properties of Sr-Ce-Bi-Ta-Si-O Ferroelectric Material by Ce substitution, Bi-Si-O Addition. Journal of the Ceramic Society of Japan, 2007, 115, 960-966.	1.1	5
77	Crystal Structure, Oxygen Nonstoichiometry and Conduction Path of LaGaO3-Based Oxide-Ion Conductors. Electrochemistry, 2009, 77, 152-154.	1.4	5
78	Effect of supersonic-wave treatment in Zn aqueous solution on property, crystal structure and cycle performance of LiMn1.5Ni0.5O4 as a cathode material for 5V class Li ion battery. Solid State Ionics, 2011, 183, 54-59.	2.7	5
79	Local structure analysis on (La,Ba)(Ga,Mg)O3â^Î by the pair distribution function method using a neutron source and density functional theory calculations. Solid State Communications, 2013, 163, 46-49.	1.9	5
80	High T ^c Superconducting Oxides and Solid State Chemistry. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 184, 1-8.	0.3	4
81	Pb Content and Oxygen Content Dependences of Tc and Jc for (Bi2.1-xPbx)Sr2.0Ca0.9Y0.1Cu2.0Oy Journal of the Ceramic Society of Japan, 2001, 109, 939-943.	1.3	4
82	Effect of Supersonic-Wave Treatment on Property and Electrode Characteristics of LiMn2O4 as a Cathode Active Material for Li Secondary Battery. Electrochemistry, 2008, 76, 808-812.	1.4	4
83	Effect of Li Content on Electronic Structure by First-Principle Calculation for Li1+xNi0.5Mn0.5O2 Cathode Active Material of Lithium-Ion Battery. Electrochemistry, 2010, 78, 367-369.	1.4	4
84	Dependence of Thermodynamic Stability, Crystal and Electronic Structures and Battery Characteristic on Synthetic Condition and Li Content for LixMn0.5Ni0.5O2 as a Cathode Active Material of Li-lon Battery. Electrochemistry, 2011, 79, 15-23.	1.4	4
85	Crystal structure and cathode properties of delithiated Li1-xMn1/3Ni1/3Co1/3O2 for Mg rechargeable batteries. Solid State Ionics, 2019, 343, 115080.	2.7	4
86	Local Structures in Disordered Rocksaltâ€Type Li 3 NbO 4 â€Based Positive Electrode Materials for a Lithiumâ€Ion Battery. Physica Status Solidi (B): Basic Research, 2020, 257, 2000112.	1.5	4
87	Theoretical Study Using First-Principles Calculations of the Electronic Structures of Magnesium Secondary Battery Cathode Materials MgCo _{2â^} <i>_x</i> Mn <i>_x (<:i>:x<:/i> = 0, 0.5) in the Pristine and Discharged States. Electrochemistry, 2021, 89, 256-266.</i>	(D&I ⁴ ;sub>
88	Relation between Crystal Structure, Electronic Structures and Electrode Performances of LiMn _{2ï¼} <i>_x</i> Cathode Active Material for Li Secondary Battery. Electrochemistry, 2003, 71, 703-709.	1.4	4
89	Dependence of Tc and the Crystal Structure of Tl2-zBa2Ca1.95Y0.05Cu3Oy Superconducting Oxide on the Tl Content Journal of the Ceramic Society of Japan, 2002, 110, 180-185.	1.3	3
90	Dependence of Properties, Crystal Structure and Electrode Characteristics on Li Content for LixCo1/3Ni1/3Mn1/3O2+.DELTA. as a Cathode Active Material for Li Secondary Battery. Electrochemistry, 2006, 74, 752-757.	1.4	3

#	Article	IF	CITATIONS
91	Relationship between average and local crystal structure and the ferroelectric properties of a Sr–Bi–Ta–Si–O ferroelectric material. Journal of Physics and Chemistry of Solids, 2009, 70, 1156-1165.	4.0	3
92	Crystal and electronic structures, thermodynamic stability, and cathode performance of Li(Ni, Co,) Tj ETQq0 0 0 rg	şBT_/Overlo 2.7	ogk 10 Tf 50
93	Single crystal synthesis, crystal structure and electrochemical property of spinel-type LiCoMnO ₄ as 5 V positive electrode materials. Journal of the Ceramic Society of Japan, 2016, 124, 706-709.	1.1	3
94	Ferroelectric and piezoelectric properties, and crystal structures of (Bi,Na)(Ti,M)O ₃ (M = Nb, Ta). Journal of the Ceramic Society of Japan, 2020, 128, 766-771.	1.1	3
95	First-principles calculations of stable local structures and electronic structures of magnesium secondary battery cathode materials, MgCo2â^'xMnxO4 (x = 0, 0.5), in second charged state after first discharge. Journal of Solid State Electrochemistry, 2022, 26, 663-682.	2.5	3
96	Preparation and Characterization of Tl-2223 Superconductor Coating Using the Electrophoretic Deposition Method. Journal of the Ceramic Society of Japan, 1997, 105, 241-245.	1.3	2
97	Relation between Electronic Structures and Electrode Performances of LiMn $<$ sub $>2-x<$ sub $>Zn<$ sub $>x<$ sub $>O<$ sub $>4<$ sub $>(x=0.05, 0.1)$ as a Cathode Active Material for 4 V Class Li Secondary Battery. Electrochemistry, 2002, 70, 847-849.	1.4	2
98	Dependence of Tc and Jc on Y Content and Oxygen Content for Bi1.76Pb0.44Sr1.86Ca2.08-xYxCu2.86Oy Superconducting Oxide. Journal of the Ceramic Society of Japan, 2003, 111, 781-785.	1.3	2
99	Electronic Structure of LiMn1-xMxO2(M=Mn, Co, Ni, Zn) as a Cathode Active Material for Li Secondary Battery by MEM/Rietveld Analysis and First Principles Calculations. Journal of the Ceramic Society of Japan, 2006, 114, 849-852.	1.3	2
100	Crystal Structure and Ferroelectric Properties of Bi4Si3O12-Added Sr-Ce-Bi-Ta-O System. Ferroelectrics, 2007, 355, 90-95.	0.6	2
101	Preparation and estimation of Ba0.9Sr0.1TiO3 dielectric films by EPD method with fine powder slurry. Journal of the Ceramic Society of Japan, 2010, 118, 374-379.	1.1	2
102	Composition dependences of Tc, Jc, physical property and crystal structure of Bi1.8Pb0.3Sr2.0Ca0.9Y0.1Cu2.0â°xMxOy (M=Zr, Zn) superconducting oxide. Physica C: Superconductivity and Its Applications, 2011, 471, 205-212.	1.2	2
103	Particle morphology, electrical conductivity, crystal and electronic structures of hydrothermally synthesized (Ce,Sr)PO4. Journal of Materials Science, 2012, 47, 6220-6225.	3.7	2
104	High-temperature protonic conduction in LaBO ₃ substituted with alkaline earth elements. Journal of the Ceramic Society of Japan, 2015, 123, 253-256.	1.1	2
105	Investigations on average and local structures of Li(Li1/6Mn1/2Ni1/6Co1/6)O2 by the pair distribution function and the density functional theory. Journal of Power Sources, 2015, 299, 280-285.	7.8	2
106	Defect Structure and Oxide-ion Conduction in (La, Sr) ₂ NiO _{4+δ} with Layered Perovskite Structure. Chemistry Letters, 2020, 49, 1071-1074.	1.3	2
107	Change of Average, Local Structures for 0.5Li ₂ MnO ₃ -0.5LiMn _{5/12} Ni _{5/12} Co _{1/6} O _{2 by Heat-Treatment under Vacuum. Electrochemistry, 2017, 85, 660-666.}	dsub>	2
108	Electrochemical Properties and Crystal and Electronic Structures of Spinel αMgCo _{2â^'} <i>x<td>:</td></i> C 1.4	:) _{ 2}

for Magnesium Secondary Batteries. Electrochemistry, 2022, 90, 027002-027002.

#	Article	IF	Citations
109	Pb Content and Oxygen Content Dependences of Tc and Jc for Bi2.20-zPbzSr1.86Ca2.03Y0.05Cu2.86Oy Superconducting Oxide. Journal of the Ceramic Society of Japan, 2005, 113, 166-171.	1.3	1
110	Preparation and Estimation of Ba1-xSrxTiO3 Dielectric Films by the Electrophoretic Deposition Method with Binder-Added Slurry. Electrochemistry, 2010, 78, 817-824.	1.4	1
111	Relationship between Ferroelectric Property and Crystal Structure of Pb(Zr, Ti, Nb)O3 with High Nb Content. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2011, 58, 703-709.	0.2	1
112	Investigation into properties of highly functional oxides using quantum beam and thermodynamic measurement. Journal of the Ceramic Society of Japan, 2014, 122, 839-845.	1.1	1
113	Synthesis of Plate-Like (Ce,Sr)PO ₄ and Preparation of Oriented Film by Electrophoretic Deposition Method. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2015, 66, 484-488.	0.2	1
114	Ferroelectric properties, average and local structures of (Bi,RE) < $\frac{1}{2}$ (Bi,RE) < $\frac{1}{2}$ (RE = La, Pr, Nd). Japanese Journal of Applied Physics, 2017, 56, 101501.	1.5	1
115	Influence of amorphous calcium carbonate on strontium ion removability from aqueous solution. Journal of the Ceramic Society of Japan, 2020, 128, 560-564.	1.1	1
116	Synthesis, Battery Characteristics and Crystal and Electronic Structure of Cathode Material Spinel Mg(Co, Ni, Mn) ₂ O ₄ for Mg Secondary Battery. ECS Meeting Abstracts, 2020, MA2020-02, 3451-3451.	0.0	1
117	Investigation of supersonic-wave treatment effect on LiNi _{0.60} Co _{0.22} Mn _{0.18} O _{2<td>sunb></td><td>0</td>}	sunb>	0
118	Relationship between Ferroelectric Performance, Crystal and Electronic Structures in SrBi ₂ (Ta _{1-x} Nb _x) _{1.95} M _{0.05} O ₉ (M)	TjiLBTQq0	0 0 rgBT /O\
119	Defect-Distribution Simulation of Crystalline Oxide by Neutron and Synchrotron X-Ray Total Scattering Measurements. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 489-494.	0.2	O
120	Local Structures in Disordered Rocksaltâ€Type Li ₃ NbO ₄ â€Based Positive Electrode Materials for a Lithiumâ€Ion Battery. Physica Status Solidi (B): Basic Research, 2020, 257, 2070043.	1.5	0
121	New Cathode Materials with Spinel and Layered Structures. , 2021, , 501-508.		0
122	Crystal Structure and High Performance of LiMn System Oxides as a Cathode Material for Lithium Ion Secondary Battery. Nihon Kessho Gakkaishi, 2004, 46, 16-20.	0.0	0
123	Average and Local Structure and Battery Characteristics as a Cathode Active Material for Li Ion Battery. Hamon, 2013, 23, 272-277.	0.0	O
124	Crystal and Electronic Structures, and Oxide-Ion Conduction Path of Pr _{1+x} Sr _{1–x} Ga ₃ O _{7+x/2} . Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 756-760.	0.2	0
125	Synthesis, Cathode Properties and Crystal and Electronic Structural Change in Charge/Discharge Process of Spinel Type Cathode-MaterialsMg4V5-XNixO12 for Magnesium Secondary Battery. ECS Meeting Abstracts, 2019, , .	0.0	0
126	Stable Structure and Electronic Structure for MgCo2-XMnxO4 As Cathode Material for Magnesium Secondary Battery in Discharge Process Using First Principle Calculation. ECS Meeting Abstracts, 2019,	0.0	O

8

#	Article	IF	CITATIONS
127	Effect of Pb Substitution on Electrical Conduction and Sinterability of LaPO ₄ -Based Protonic Conductor. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 391-395.	0.2	0
128	The Effect of Separator and Anode on Electrochemical Characteristics and Crystal Structure of Lithium Ion Battery Cathode Material 0.4Li ₂ MnO ₃ -0.6LiMn _{1/3} Ni _{1/3} Co _{1/3} O ₂ ECS Meeting Abstracts, 2020, MA2020-02, 56-56.	sub>.	O
129	Study on Local Chemical Orderings in Li ₃ NbO ₄ -Based Positive Electrode Materials with a Disordered Rock-Salt Structure By a Reverse Monte Carlo Modeling. ECS Meeting Abstracts, 2020, MA2020-02, 67-67.	0.0	0
130	Investigation of Solid Solution Ratio and Study for Crystal and Electronic Structure and Battery Properties of Spinel-Type $\hat{l}\pm MgCo1.5Mn0.5O4-(1-\hat{l}\pm)Mg(Mg0.33V1.57Ni0.1)O4$ for Mg Rechargeable Battery Cathode Materials. ECS Meeting Abstracts, 2020, MA2020-02, 3611-3611.	0.0	0
131	Stable Structure and Electronic Structure for Mg(MgxVyNiz)O4 As Cathode Material for Magnesium Secondary Battery in Discharge Process Using First-Principle Calculation. ECS Meeting Abstracts, 2020, MA2020-02, 458-458.	0.0	0
132	Synthesis of Mg-Rich Mg-M-O(M = Fe, Ni, Mn) Cathode Materials Using Layered Double Hydroxide Andpositive Electrode Characteristics and Average / Local Structure. ECS Meeting Abstracts, 2020, MA2020-02, 3476-3476.	0.0	0
133	Crystal Structures and Cathode Properties of Delithiated LixNi0.5Mn0.5O2 for Mg Rechargeable Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 214-214.	0.0	0
134	Chemical Desodiation, Na/Mg Ion-Exchange and Mg Rechargeable Battery Cathode Properties in NaMn1/2Ni1/2O2. ECS Meeting Abstracts, 2020, MA2020-02, 3486-3486.	0.0	0
135	Synthesis, Cathode Properties and Crystal and Electronic Structural Change in Charge-Discharge Process of Spinel Type Cathode Materials Mg4V5-XNixO12 for Magnesium Secondary Battery. ECS Meeting Abstracts, 2020, MA2020-02, 215-215.	0.0	0
136	Effect of Mo, W Substitution on Ferroelectric Characteristics, Crystal and Electronic Structure of Bi _{0.5} K _{0.5} TiO ₃ BiFeO ₃ KTaO ₃ Based Ferroelectric Ceramics. ECS Meeting Abstracts, 2020, MA2020-02, 3568-3568.	0.0	0