Christian Münch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9015628/publications.pdf

Version: 2024-02-01

47 papers 3,842 citations

279778 23 h-index 206102 48 g-index

65 all docs

65 docs citations

times ranked

65

8025 citing authors

#	Article	IF	CITATIONS
1	Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway. Cell Death and Differentiation, 2022, 29, 568-584.	11.2	16
2	Global mitochondrial protein import proteomics reveal distinct regulation by translation and translocation machinery. Molecular Cell, 2022, 82, 435-446.e7.	9.7	34
3	Mitochondria shed their outer membrane in response to infection-induced stress. Science, 2022, 375, eabi4343.	12.6	42
4	Proteomic landscape of SARS-CoV-2– and MERS-CoV–infected primary human renal epithelial cells. Life Science Alliance, 2022, 5, e202201371.	2.8	5
5	PBLMM: Peptideâ€based linear mixed models for differential expression analysis of shotgun proteomics data. Journal of Cellular Biochemistry, 2022, 123, 691-696.	2.6	4
6	Quantitative Translation Proteomics Using mePROD. Methods in Molecular Biology, 2022, 2428, 75-87.	0.9	3
7	USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K. Molecular Oncology, 2022, 16, 3082-3106.	4.6	4
8	PTEN mutant non-small cell lung cancer require ATM to suppress pro-apoptotic signalling and evade radiotherapy. Cell and Bioscience, 2022, 12, 50.	4.8	9
9	Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 2022, 607, 593-603.	27.8	102
10	Virus systems biology: Proteomics profiling of dynamic protein networks during infection. Advances in Virus Research, 2021, 109, 1-29.	2.1	5
11	Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death. Autophagy, 2021, 17, 3424-3443.	9.1	39
12	SRSF3 and SRSF7 modulate 3′UTR length through suppression or activation of proximal polyadenylation sites and regulation of CFIm levels. Genome Biology, 2021, 22, 82.	8.8	30
13	Characterization of Extracellular Vesicles from Preconditioned Human Adipose-Derived Stromal/Stem Cells. International Journal of Molecular Sciences, 2021, 22, 2873.	4.1	12
14	A Chemical Toolbox for Labeling and Degrading Engineered Cas Proteins. Jacs Au, 2021, 1, 777-785.	7.9	10
15	A PROTAC targets splicing factor 3B1. Cell Chemical Biology, 2021, 28, 1616-1627.e8.	5.2	15
16	Calcitriol Promotes Differentiation of Glioma Stem-Like Cells and Increases Their Susceptibility to Temozolomide. Cancers, 2021, 13, 3577.	3.7	12
17	Activating transcription factor 4 mediates adaptation of human glioblastoma cells to hypoxia and temozolomide. Scientific Reports, 2021, 11, 14161.	3.3	11
18	A Spatial and Functional Interaction of a Heterotetramer Survivin–DNA-PKcs Complex in DNA Damage Response. Cancer Research, 2021, 81, 2304-2317.	0.9	8

#	Article	IF	Citations
19	Functional Translatome Proteomics Reveal Converging and Dose-Dependent Regulation by mTORC1 and eIF2α. Molecular Cell, 2020, 77, 913-925.e4.	9.7	81
20	Unbiased translation proteomics upon cell stress. Molecular and Cellular Oncology, 2020, 7, 1763150.	0.7	4
21	Growth Factor Receptor Signaling Inhibition Prevents SARS-CoV-2 Replication. Molecular Cell, 2020, 80, 164-174.e4.	9.7	199
22	The Lipid Receptor G2A (GPR132) Mediates Macrophage Migration in Nerve Injury-Induced Neuropathic Pain. Cells, 2020, 9, 1740.	4.1	14
23	COVID-19-Related Coagulopathy—Is Transferrin a Missing Link?. Diagnostics, 2020, 10, 539.	2.6	32
24	Aprotinin Inhibits SARS-CoV-2 Replication. Cells, 2020, 9, 2377.	4.1	72
25	BAG3 Proteomic Signature under Proteostasis Stress. Cells, 2020, 9, 2416.	4.1	15
26	Instrument Logic Increases Identifications during Mutliplexed Translatome Measurements. Analytical Chemistry, 2020, 92, 8041-8045.	6.5	10
27	Serine-dependent redox homeostasis regulates glioblastoma cell survival. British Journal of Cancer, 2020, 122, 1391-1398.	6.4	41
28	Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature, 2020, 583, 469-472.	27.8	841
29	Loss of mitochondrial ClpP, Lonp1, and Tfam triggers transcriptional induction of Rnf213, a susceptibility factor for moyamoya disease. Neurogenetics, 2020, 21, 187-203.	1.4	14
30	Maintaining protein stability of â^†Np63 via <scp>USP</scp> 28 is required by squamous cancer cells. EMBO Molecular Medicine, 2020, 12, e11101.	6.9	42
31	TA*p63 and GTAp63 achieve tighter transcriptional regulation in quality control by converting an inhibitory element into an additional transactivation domain. Cell Death and Disease, 2019, 10, 686.	6.3	10
32	Biglycan evokes autophagy in macrophages via aÂnovel CD44/Toll-like receptor 4 signaling axisÂinÂischemia/reperfusion injury. Kidney International, 2019, 95, 540-562.	5.2	78
33	Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiology of Disease, 2019, 127, 114-130.	4.4	21
34	Loss of the selective autophagy receptor p62 impairs murine myeloid leukemia progression and mitophagy. Blood, 2019, 133, 168-179.	1.4	83
35	Hitchhiking on selective autophagy. Nature Cell Biology, 2018, 20, 122-124.	10.3	14
36	Endosomal Rab cycles regulate Parkin-mediated mitophagy. ELife, 2018, 7, .	6.0	113

#	Article	IF	CITATIONS
37	AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells. Autophagy, 2018, 14, 1693-1709.	9.1	79
38	The different axes of the mammalian mitochondrial unfolded protein response. BMC Biology, 2018, 16, 81.	3.8	105
39	TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Nature, 2017, 543, 211-216.	27.8	96
40	Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization. Cell, 2016, 167, 985-1000.e21.	28.9	259
41	Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature, 2016, 534, 710-713.	27.8	231
42	Quantifying Ubiquitin Signaling. Molecular Cell, 2015, 58, 660-676.	9.7	124
43	Propagation of the Prion Phenomenon: Beyond the Seeding Principle. Journal of Molecular Biology, 2012, 421, 491-498.	4.2	28
44	Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition. Molecular Cell, 2012, 48, 242-253.	9.7	264
45	Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3548-3553.	7.1	421
46	Self-propagation and transmission of misfolded mutant SOD1: Prion or prion-like phenomenon?. Cell Cycle, 2011, 10, 1711-1711.	2.6	22
47	Exposure of Hydrophobic Surfaces Initiates Aggregation of Diverse ALS-Causing Superoxide Dismutase-1 Mutants. Journal of Molecular Biology, 2010, 399, 512-525.	4.2	111