
Carine Bossenmeyer-Pourie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9015317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucocorticoid Receptor Activation Restores Learning Memory by Modulating Hippocampal Plasticity in a Mouse Model of Brain Vitamin B12 Deficiency. Molecular Neurobiology, 2021, 58, 1024-1035.	4.0	7
2	Expanding the clinical spectrum of STIP1 homology and U-box containing protein 1-associated ataxia. Journal of Neurology, 2021, 268, 1927-1937.	3.6	15
3	The Stimulation of Neurogenesis Improves the Cognitive Status of Aging Rats Subjected to Gestational and Perinatal Deficiency of B9–12 Vitamins. International Journal of Molecular Sciences, 2020, 21, 8008.	4.1	7
4	Methyl Donor Deficiency during Gestation and Lactation in the Rat Affects the Expression of Neuropeptides and Related Receptors in the Hypothalamus. International Journal of Molecular Sciences, 2019, 20, 5097.	4.1	10
5	Developmental Impairments in a Rat Model of Methyl Donor Deficiency: Effects of a Late Maternal Supplementation with Folic Acid. International Journal of Molecular Sciences, 2019, 20, 973.	4.1	20
6	Nâ€homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer's disease and vascular dementia. Journal of Pathology, 2019, 248, 291-303.	4.5	35
7	Brain Susceptibility to Methyl Donor Deficiency: From Fetal Programming to Aging Outcome in Rats. International Journal of Molecular Sciences, 2019, 20, 5692.	4.1	11
8	Late Maternal Folate Supplementation Rescues from Methyl Donor Deficiency-Associated Brain Defects by Restoring Let-7 and miR-34 Pathways. Molecular Neurobiology, 2017, 54, 5017-5033.	4.0	35
9	Folate- and vitamin B ₁₂ –deficient diet during gestation and lactation alters cerebellar synapsin expression <i>via</i> impaired influence of estrogen nuclear receptor α. FASEB Journal, 2015, 29, 3713-3725.	0.5	33
10	Early methyl donor deficiency produces severe gastritis in mothers and offspring through <i>N</i> â€homocysteinylation of cytoskeleton proteins, cellular stress, and inflammation. FASEB Journal, 2013, 27, 2185-2197.	0.5	19
11	Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by miR-124. Cell Death and Disease, 2013, 4, e755-e755.	6.3	59
12	Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. British Journal of Nutrition, 2013, 109, 667-677.	2.3	32
13	Homocysteinylation of neuronal proteins contributes to folate deficiencyâ€associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells. FASEB Journal, 2012, 26, 3980-3992.	0.5	66
14	Mo1800 Methyl Donor Deficiency Affects Small Intestinal Differentiation and Barrier Function in Rats. Gastroenterology, 2012, 142, S-688.	1.3	0
15	Increased homocysteinemia is associated with beneficial effects on body weight after long-term high-protein, low-fat diet in rats. Nutrition, 2012, 28, 932-936.	2.4	3
16	Non-Injurious Neonatal Hypoxia Confers Resistance to Brain Senescence in Aged Male Rats. PLoS ONE, 2012, 7, e48828.	2.5	17
17	Methyl deficient diet aggravates experimental colitis in rats. Journal of Cellular and Molecular Medicine, 2011, 15, 2486-2497.	3.6	31
18	Differentiation and neural integration of hippocampal neuronal progenitors: Signaling pathways sequentially involved. Hippocampus, 2010, 20, 949-961.	1.9	17

#	Article	IF	CITATIONS
19	Conditioning-like Brief Neonatal Hypoxia Improves Cognitive Function and Brain Tissue Properties with Marked Gender Dimorphism in Adult Rats. Seminars in Perinatology, 2010, 34, 193-200.	2.5	17
20	Association of neuropeptide W, but not obestatin, with energy intake and endocrine status in Zucker rats. A new player in long-term stress-feeding interactions. Appetite, 2010, 55, 319-324.	3.7	13
21	Methyl Donor Deficiency Affects Fetal Programming of Gastric Ghrelin Cell Organization and Function in the Rat. American Journal of Pathology, 2010, 176, 270-277.	3.8	32
22	Short hypoxia could attenuate the adverse effects of hyperhomocysteinemia on the developing rat brain by inducing neurogenesis. Experimental Neurology, 2009, 216, 231-238.	4.1	28
23	Cestational Vitamin B Deficiency Leads to Homocysteine-Associated Brain Apoptosis and Alters Neurobehavioral Development in Rats. American Journal of Pathology, 2007, 170, 667-679.	3.8	135
24	The Immunostimulatory Peptide WKYMVm-NH2 Activates Bone Marrow Mouse Neutrophils via Multiple Signal Transduction Pathways. Scandinavian Journal of Immunology, 2005, 62, 140-147.	2.7	7
25	Mouse bone marrow contains large numbers of functionally competent neutrophils. Journal of Leukocyte Biology, 2004, 75, 604-611.	3.3	268
26	The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. Journal of Cell Biology, 2002, 157, 761-770.	5.2	166
27	Sequential expression patterns of apoptosis- and cell cycle-related proteins in neuronal response to severe or mild transient hypoxia. Neuroscience, 2002, 114, 869-882.	2.3	49
28	Lack of Correlation Between the Effects of Transient Exposure to Glutamate and Those of Hypoxia/Reoxygenation in Immature Neurons In Vitro. Journal of Neurochemistry, 2002, 71, 1177-1186.	3.9	32
29	Human pS2/Trefoil Factor 1: Production and Characterization in Pichia pastoris. Protein Expression and Purification, 2001, 21, 92-98.	1.3	20
30	Intracellular generation of free radicals and modifications of detoxifying enzymes in cultured neurons from the developing rat forebrain in response to transient hypoxia. Neuroscience, 2001, 105, 287-297.	2.3	57
31	Effects of Hypothermia on Hypoxia-Induced Apoptosis in Cultured Neurons from Developing Rat Forebrain: Comparison with Preconditioning. Pediatric Research, 2000, 47, 385-391.	2.3	72
32	Transient hypoxia may lead to neuronal proliferation in the developing mammalian brain: from apoptosis to cell cycle completion. Neuroscience, 1999, 91, 221-231.	2.3	43
33	Involvement of caspase-1 proteases in hypoxic brain injury. Effects of their inhibitors in developing neurons. Neuroscience, 1999, 95, 1157-1165.	2.3	17
34	CPP32/CASPASE-3-like proteases in hypoxia-induced apoptosis in developing brain neurons. Molecular Brain Research, 1999, 71, 225-237.	2.3	32
35	Hypoxia/reoxygenation induces apoptosis through biphasic induction of protein synthesis in cultured rat brain neurons. Brain Research, 1998, 787, 107-116.	2.2	67
36	Prevention from hypoxia-induced apoptosis by pre-conditioning: a mechanistic approach in cultured neurons from fetal rat forebrain. Molecular Brain Research, 1998, 58, 237-239.	2.3	31

#	Article	IF	CITATIONS
37	Glutamate Triggers Cell Death Specifically in Mature Central Neurons through a Necrotic Process. Molecular Genetics and Metabolism, 1998, 63, 142-147.	1.1	28