Kenji Iwase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9014889/publications.pdf

Version: 2024-02-01

840776 794594 29 361 11 19 h-index citations g-index papers 29 29 29 146 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Structural Study of La ₄ MgNi ₁₉ Hydride by In Situ X-ray and Neutron Powder Diffraction. Journal of Physical Chemistry C, 2009, 113, 5853-5859.	3.1	71
2	Phase Transformation and Crystal Structure of La ₂ Ni ₇ H _x Studied by in situ X-ray Diffraction. Inorganic Chemistry, 2010, 49, 8763-8768.	4.0	33
3	Synthesis and Crystal Structure of a Pr5Ni19Superlattice Alloy and Its Hydrogen Absorption–Desorption Property. Inorganic Chemistry, 2011, 50, 4548-4552.	4.0	28
4	Crystal structure and cyclic properties of hydrogen absorption–desorption in Pr2MgNi9. International Journal of Hydrogen Energy, 2012, 37, 18095-18100.	7.1	25
5	Synthesis of New Compound Gd ₅ Ni ₁₉ with a Superlattice Structure and Hydrogen Absorption Properties. Inorganic Chemistry, 2011, 50, 11631-11635.	4.0	20
6	Hydrogenation and structural properties of Gd2Ni7 with superlattice structure. International Journal of Hydrogen Energy, 2012, 37, 5122-5127.	7.1	20
7	In Situ XRD Study of La2Ni7HxDuring Hydrogen Absorption–Desorption. Inorganic Chemistry, 2013, 52, 10105-10111.	4.0	19
8	Effects of Mg substitution on crystal structure and hydrogenation properties of Pr1â^'Mg Ni3. International Journal of Hydrogen Energy, 2014, 39, 12773-12777.	7.1	18
9	Structural Parameters of Pr ₃ MgNi ₁₄ during Hydrogen Absorption–Desorption Process. Inorganic Chemistry, 2012, 51, 11805-11810.	4.0	16
10	Crystal structure of GdNi3 with superlattice alloy and its hydrogen absorption–desorption property. International Journal of Hydrogen Energy, 2012, 37, 15170-15174.	7.1	15
11	Crystal structure and hydrogen storage property of Nd2Ni7 superlattice alloy. International Journal of Hydrogen Energy, 2013, 38, 5316-5321.	7.1	14
12	Crystal Structure, Microhardness, and Toughness of Biomineral CaCO ₃ . Crystal Growth and Design, 2020, 20, 2091-2098.	3.0	12
13	Crystal Structure and Cyclic Hydrogenation Property of Pr ₄ MgNi ₁₉ . Inorganic Chemistry, 2013, 52, 14270-14274.	4.0	10
14	Development of sample holder for in situ neutron measurement of hydrogen absorbing alloy. International Journal of Hydrogen Energy, 2011, 36, 3062-3066.	7.1	9
15	Effect of Mg substitution on crystal structure and hydrogenation of Ce 2 Ni 7 -type Pr 2 Ni 7. Journal of Solid State Chemistry, 2017, 247, 142-146.	2.9	8
16	Structural change of NdNi3 during hydrogen absorption-desorption cycle. International Journal of Hydrogen Energy, 2016, 41, 3940-3945.	7.1	7
17	Phase transition and hydrogenation properties of Ce2Ni7-type Pr2Co7 during the hydrogen absorption process. International Journal of Hydrogen Energy, 2018, 43, 11100-11108.	7.1	7
18	Crystal structure and hydrogen absorptionâ^' desorption property of La5Co19. International Journal of Hydrogen Energy, 2019, 44, 23172-23178.	7.1	7

#	Article	IF	CITATIONS
19	Synthesis of PuNi3-type PrCo3 and its hydrogen absorption–desorption property. International Journal of Hydrogen Energy, 2016, 41, 14788-14794.	7.1	4
20	Hydrogenation characteristics of Ce2Ni7-type La2Co7 and its phase transformation during hydrogen absorption–desorption processes. Journal of Solid State Chemistry, 2021, 299, 122201.	2.9	4
21	Surface Observation of LaNi ₅ under Deuterium Atmosphere Using Small-Angle Neutron Scattering. Materials Transactions, 2014, 55, 1643-1646.	1.2	3
22	Crystallographic hydride phase analysis and hydrogenation properties of Gd2Co7 with Ce2Ni7- and Er2Co7-type structures. International Journal of Hydrogen Energy, 2020, 45, 27413-27420.	7.1	3
23	Crystal structure of intermetallic compound Y5Co19 and its hydride phases. International Journal of Hydrogen Energy, 2021, 46, 9142-9150.	7.1	3
24	Crystal Structure of Pr ₃ MgNi ₁₄ D _{<i>x</i>} Studied by in Situ Neutron Diffraction. Inorganic Chemistry, 2017, 56, 6933-6937.	4.0	2
25	Crystal Structure Analysis of La ₂ Ni ₆ CoD _{<i>x</i>} During Deuterium Absorption Process. Inorganic Chemistry, 2015, 54, 8650-8655.	4.0	1
26	Effect of Mg substitution on hydrogen absorption–desorption behavior and crystal structure of Gd 2â~'x Mg x Ni 7. International Journal of Hydrogen Energy, 2016, 41, 1074-1079.	7.1	1
27	Effect of Mg substitution on crystalline structure and hydrogenation of Gd4MgNi19. International Journal of Hydrogen Energy, 2018, 43, 1675-1680.	7.1	1
28	Commissioning of Versatile Compact Neutron Diffractometer (VCND) at the B-3 Beam Port of Kyoto University Research Reactor (KUR)., 2021,,.		0
29	Effect of Co substitution on hydrogenation behavior of GdNi3-Co ($x = 0, 0.2, 1.0$) and crystal structure of its hydride phases. International Journal of Hydrogen Energy, 2022, 47, 3961-3971.	7.1	0