Neil Pederson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9014749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 2016, 22, 2329-2352.	4.2	428
2	Multiple interacting ecosystem drivers: toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography, 2011, 34, 244-256.	2.1	323
3	Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4375-4379.	3.3	237
4	The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia, 2004, 22, 7-29.	1.0	195
5	Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytologist, 2013, 200, 1145-1155.	3.5	179
6	Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Global Change Biology, 2018, 24, 2339-2351.	4.2	168
7	The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecological Monographs, 2014, 84, 599-620.	2.4	140
8	Is an Epic Pluvial Masking the Water Insecurity of the Greater New York City Region?*,+. Journal of Climate, 2013, 26, 1339-1354.	1.2	126
9	Northeastern North America as a potential refugium for boreal forests in a warming climate. Science, 2016, 352, 1452-1455.	6.0	126
10	The International Treeâ€Ring Data Bank (<scp>ITRDB</scp>) revisited: Data availability and global ecological representativity. Journal of Biogeography, 2019, 46, 355-368.	1.4	123
11	Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecology Letters, 2019, 22, 119-127.	3.0	106
12	Convergence in drought stress, but a divergence of climatic drivers across a latitudinal gradient in a temperate broadleaf forest. Journal of Biogeography, 2015, 42, 925-937.	1.4	98
13	Climate remains an important driver of postâ€European vegetation change in the eastern United States. Global Change Biology, 2015, 21, 2105-2110.	4.2	96
14	Past and future drought in Mongolia. Science Advances, 2018, 4, e1701832.	4.7	91
15	Forest tree growth response to hydroclimate variability in the southern Appalachians. Global Change Biology, 2015, 21, 4627-4641.	4.2	90
16	A multispecies tree ring reconstruction of Potomac River streamflow (950–2001). Water Resources Research, 2011, 47, .	1.7	75
17	External Characteristics of Old Trees in the Eastern Deciduous Forest. Natural Areas Journal, 2010, 30, 396-407.	0.2	67
18	The 1960s Drought and the Subsequent Shift to a Wetter Climate in the Catskill Mountains Region of the New York City Watershed*. Journal of Climate, 2012, 25, 6721-6742.	1.2	67

NEIL PEDERSON

#	Article	IF	CITATIONS
19	Carbon budget of the Harvard Forest Longâ€Term Ecological Research site: pattern, process, and response to global change. Ecological Monographs, 2020, 90, e01423.	2.4	67
20	Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytologist, 2021, 231, 601-616.	3.5	63
21	Comparing treeâ€ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere, 2016, 7, e01454.	1.0	59
22	Centennial-scale reductions in nitrogen availability in temperate forests of the United States. Scientific Reports, 2017, 7, 7856.	1.6	53
23	Joint effects of climate, tree size, and year on annual tree growth derived from treeâ€ring records of ten globally distributed forests. Global Change Biology, 2022, 28, 245-266.	4.2	46
24	Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition. Scientific Reports, 2017, 7, 46158.	1.6	44
25	Contributing factors for drought in United States forest ecosystems under projected future climates and their uncertainty. Forest Ecology and Management, 2016, 380, 299-308.	1.4	43
26	Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale. Nature Communications, 2019, 10, 742.	5.8	42
27	Pervasive effects of drought on tree growth across a wide climatic gradient in the temperate forests of the Caucasus. Clobal Ecology and Biogeography, 2018, 27, 1314-1325.	2.7	34
28	Long-term drought sensitivity of trees in second-growth forests in a humid region. Canadian Journal of Forest Research, 2012, 42, 1837-1850.	0.8	31
29	Climatic history of the northeastern United States during the past 3000 years. Climate of the Past, 2017, 13, 1355-1379.	1.3	29
30	Redefining temperate forest responses to climate and disturbance in the eastern United States: New insights at the mesoscale. Global Ecology and Biogeography, 2019, 28, 557-575.	2.7	28
31	Demographic shifts in eastern US forests increase the impact of lateâ€season drought on forest growth. Ecography, 2020, 43, 1475-1486.	2.1	27
32	Tree-ring reconstructed May–June precipitation in the Caucasus since 1752 CE. Climate Dynamics, 2016, 47, 3011-3027.	1.7	22
33	Higher CO 2 Concentrations and Lower Acidic Deposition Have Not Changed Drought Response in Tree Growth But Do Influence iWUE in Hardwood Trees in the Midwestern United States. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3798-3813.	1.3	22
34	Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology, 2021, 102, e03264.	1.5	22
35	Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytologist, 2019, 223, 1204-1216.	3.5	21
36	Severe Longâ€Lasting Drought Accelerated Carbon Depletion in the Mongolian Plateau. Geophysical Research Letters, 2019, 46, 5303-5312.	1.5	18

NEIL PEDERSON

#	Article	IF	CITATIONS
37	The potential to strengthen temperature reconstructions in ecoregions with limited tree line using a multispecies approach. Quaternary Research, 2019, 92, 583-597.	1.0	17
38	Size–growth asymmetry is not consistently related to productivity across an eastern US temperate forest network. Oecologia, 2019, 189, 515-528.	0.9	17
39	Reconstructing Northeastern United States temperatures using Atlantic white cedar tree rings. Environmental Research Letters, 2017, 12, 114012.	2.2	16
40	Regional Variation of Transient Precipitation and Rainless-day Frequency Across a Subcontinental Hydroclimate Gradient. Journal of Extreme Events, 2015, 02, 1550007.	1.2	12
41	Increased water use efficiency leads to decreased precipitation sensitivity of tree growth, but is offset by high temperatures. Oecologia, 2021, 197, 1095-1110.	0.9	11
42	TOWARDS A MORE ECOLOGICAL DENDROECOLOGY. Tree-Ring Research, 2019, 75, 152.	0.4	10
43	Disturbances and Climate Drive Structure, Stability, and Growth in Mixed Temperate Old-growth Rainforests in the Caucasus. Ecosystems, 2020, 23, 1170-1185.	1.6	9
44	The Drought Response of Eastern US Oaks in the Context of Their Declining Abundance. BioScience, 2022, 72, 333-346.	2.2	9
45	A late Holocene subfossil Atlantic white cedar tree-ring chronology from the northeastern United States. Quaternary Science Reviews, 2020, 228, 106104.	1.4	8
46	A Framework for Determining Population-Level Vulnerability to Climate: Evidence for Growth Hysteresis in Chamaecyparis thyoides Along Its Contiguous Latitudinal Distribution. Frontiers in Forests and Global Change, 2020, 3, .	1.0	8
47	Dendro-archeo-ecology in North America and Europe: Re-purposing Historical Materials to Study Ancient Human-Environment Interactions. Ecological Studies, 2017, , 365-394.	0.4	7
48	The Wood Image Analysis and Dataset (WIAD): Openâ€access visual analysis tools to advance the ecological data revolution. Methods in Ecology and Evolution, 2021, 12, 2379-2387.	2.2	6
49	Radial growth responses of tulip poplar (<i>Liriodendron tulipifera</i>) to climate in the eastern United States. Ecosphere, 2020, 11, e03203.	1.0	5
50	Delineating Environmental Stresses to Primary Production of U.S. Forests From Tree Rings: Effects of Climate Seasonality, Soil, and Topography. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005499.	1.3	5
51	Low-Hanging DendroDynamic Fruits Regarding Disturbance in Temperate, Mesic Forests. Ecological Studies, 2017, , 97-134.	0.4	4
52	Multivariate Climate Field Reconstructions Using Tree Rings for the Northeastern United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031619.	1.2	4
53	Coupling of Tree Growth and Photosynthetic Carbon Uptake Across Six North American Forests. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3