Da Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9014653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant protein-based fibers: Fabrication, characterization, and potential food applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 4554-4578.	5.4	14
2	Heat accelerates degradation of β-lactoglobulin fibrils at neutral pH. Food Hydrocolloids, 2022, 124, 107291.	5.6	18
3	Structural evolution during gelation of pea and whey proteins envisaged by time-resolved ultra-small-angle x-ray scattering (USAXS). Food Hydrocolloids, 2022, 126, 107449.	5.6	10
4	Exploring Relationships between Aroma, Tasty Components Properties, and Marketing Price of Chinese Cabernet Sauvignon Using Gas Chromatography Mass Spectrum and High-Performance Liquid Chromatography. Journal of Food Quality, 2022, 2022, 1-13.	1.4	0
5	Limited enzymatic hydrolysis induced pea protein gelation at low protein concentration with less heat requirement. Food Hydrocolloids, 2022, 128, 107547.	5.6	32
6	Preparation and physiochemical properties of enzymatically modified octenyl succinate starch. Journal of Food Science, 2022, 87, 2112-2120.	1.5	2
7	Stabilization and Dispersion of OSA Starch-Coated Titania Nanoparticles in Kappa-Carrageenan-Based Solution. Nanomaterials, 2022, 12, 1519.	1.9	0
8	Pressure, shear, thermal, and interaction effects on quality attributes of pea–dairy protein colloidal dispersions. Food Hydrocolloids, 2022, 131, 107811.	5.6	7
9	Relationships between Shanghai Five Different Home-Brewed Wines Sensory Properties and Their Volatile Composition Assessed by GC-MS. Journal of Food Quality, 2022, 2022, 1-12.	1.4	1
10	Characterization and Cellular Uptake of Peptides Derived from <i>In Vitro</i> Digestion of Meat Analogues Produced by a Sustainable Extrusion Process. Journal of Agricultural and Food Chemistry, 2022, 70, 8124-8133.	2.4	13
11	Non-invasive techniques to study starch structure and starchy products properties. Current Opinion in Food Science, 2021, 38, 196-202.	4.1	5
12	Volatile profiles of two genotype Agaricus bisporus species at different growth stages. Food Research International, 2021, 140, 109761.	2.9	21
13	Polyphenols Weaken Pea Protein Gel by Formation of Large Aggregates with Diminished Noncovalent Interactions. Biomacromolecules, 2021, 22, 1001-1014.	2.6	33
14	Quantitative analysis of volatile compounds of four Chinese traditional liquors by SPME-GC-MS and determination of total phenolic contents and antioxidant activities. Open Chemistry, 2021, 19, 518-529.	1.0	1
15	Evaluation of eight kinds of flavor enhancer of umami taste by an electronic tongue. Food Science and Nutrition, 2021, 9, 2095-2104.	1.5	20
16	Limited hydrolysis and conjugation of zein with chitosan oligosaccharide by enzymatic reaction to improve functional properties. Food Chemistry, 2021, 348, 129035.	4.2	36
17	Characterization of key aroma compounds in Xinjiang dried figs (Ficus carica L.) by GC–MS, GC–olfactometry, odor activity values, and sensory analyses. LWT - Food Science and Technology, 2021, 150, 111982.	2.5	31
18	Quantitative structureâ€activity relationships (QSAR) of aroma compounds in different aged Huangjiu. Journal of Food Science, 2020, 85, 3273-3281.	1.5	12

Da Chen

#	Article	IF	CITATIONS
19	Electrospinning Induced Orientation of Protein Fibrils. Biomacromolecules, 2020, 21, 2772-2785.	2.6	21
20	Emulsion-based delivery systems for curcumin: Encapsulation and interaction mechanism between debranched starch and curcumin. International Journal of Biological Macromolecules, 2020, 161, 746-754.	3.6	45
21	Harnessing Fiber Diameter-Dependent Effects of Myoblasts Toward Biomimetic Scaffold-Based Skeletal Muscle Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 203.	2.0	52
22	Rheology, microstructure and phase behavior of potato starch-protein fibril mixed gel. Carbohydrate Polymers, 2020, 239, 116247.	5.1	57
23	The Inhibitory Effects of Hericium erinaceus β-glucan on in vitro Starch Digestion. Frontiers in Nutrition, 2020, 7, 621131.	1.6	5
24	Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.). Planta, 2019, 250, 1819-1832.	1.6	8
25	Developmental changes in collenchyma cell-wall polysaccharides in celery (Apium graveolens L.) petioles. BMC Plant Biology, 2019, 19, 81.	1.6	10
26	Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles. BMC Plant Biology, 2017, 17, 104.	1.6	25
27	Comparison of celery (Apium graveolens L.) collenchyma and parenchyma cell wall polysaccharides enabled by solid-state 13C NMR. Carbohydrate Research, 2016, 420, 51-57.	1.1	15
28	Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. Journal of Functional Foods, 2014, 6, 575-584.	1.6	107
29	Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate. Journal of Functional Foods, 2013, 5, 689-697.	1.6	103
30	Optimization of Hydrolysis Conditions for the Production of the Angiotensin-I Converting Enzyme Inhibitory Peptides from Sea Cucumber Collagen Hydrolysates. Journal of Aquatic Food Product Technology, 2011, 20, 222-232.	0.6	28
31	Preparation, Characterization, and In Vitro Saliva Digestion of Enzymatically Modified Octenylsuccinate Starchâ€Methol Inclusion Complex. Starch/Staerke, 0, , 2200010.	1.1	0