
Gila Moalem-Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9014089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of combined chemotherapy and anti-programmed cell death protein 1 treatment on peripheral neuropathy and neuroinflammation in mice. Pain, 2022, 163, 110-124.	2.0	2
2	Sexâ€specific transcriptome of spinal microglia in neuropathic pain due to peripheral nerve injury. Glia, 2022, 70, 675-696.	2.5	25
3	Electrophysiological investigation of motor axonal excitability in a mouse model of nerve constriction injury. Journal of the Peripheral Nervous System, 2021, 26, 99-112.	1.4	0
4	Cutaneous Neuroimmune Interactions in Peripheral Neuropathic Pain States. Frontiers in Immunology, 2021, 12, 660203.	2.2	31
5	The cannabinoid system and microglia in health and disease. Neuropharmacology, 2021, 190, 108555.	2.0	49
6	Effect of exercise on neuromuscular toxicity in oxaliplatinâ€ŧreated mice. Muscle and Nerve, 2021, 64, 225-234.	1.0	1
7	Oxaliplatin-induced haematological toxicity and splenomegaly in mice. PLoS ONE, 2020, 15, e0238164.	1.1	12
8	Acute changes in nerve excitability following oxaliplatin treatment in mice. Journal of Neurophysiology, 2020, 124, 232-244.	0.9	9
9	Red-Light (670 nm) Therapy Reduces Mechanical Sensitivity and Neuronal Cell Death, and Alters Glial Responses after Spinal Cord Injury in Rats. Journal of Neurotrauma, 2020, 37, 2244-2260.	1.7	5
10	The Roles of Regulatory T Cells in Central Nervous System Autoimmunity. Contemporary Clinical Neuroscience, 2019, , 167-193.	0.3	0
11	Adoptive Transfer of Regulatory T Cells as a Promising Immunotherapy for the Treatment of Multiple Sclerosis. Frontiers in Neuroscience, 2019, 13, 1107.	1.4	39
12	Dorsal root ganglion explants derived from chemotherapy-treated mice have reduced neurite outgrowth in culture. Neuroscience Letters, 2019, 694, 14-19.	1.0	23
13	Regulatory T Cells and Their Derived Cytokine, Interleukin-35, Reduce Pain in Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2019, 39, 2326-2346.	1.7	44
14	The role of regulatory T cells in nervous system pathologies. Journal of Neuroscience Research, 2018, 96, 951-968.	1.3	64
15	Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice. Experimental Neurology, 2018, 300, 1-12.	2.0	96
16	Oxaliplatin induces muscle loss and muscleâ€specific molecular changes in Mice. Muscle and Nerve, 2018, 57, 650-658.	1.0	22
17	A unified model of the excitability of mouse sensory and motor axons. Journal of the Peripheral Nervous System, 2018, 23, 159-173.	1.4	9
18	Managing Neuropathic Pain in Multiple Sclerosis: Pharmacological Interventions. Medicinal Chemistry, 2018, 14, 106-119.	0.7	13

GILA MOALEM-TAYLOR

#	Article	IF	CITATIONS
19	Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. European Journal of Cancer, 2017, 73, 22-29.	1.3	130
20	Immune dysregulation in patients with carpal tunnel syndrome. Scientific Reports, 2017, 7, 8218.	1.6	16
21	Characterisation of Peptide5 systemic administration for treating traumatic spinal cord injured rats. Experimental Brain Research, 2017, 235, 3033-3048.	0.7	13
22	Systemic Administration of Connexin43 Mimetic Peptide Improves Functional Recovery after Traumatic Spinal Cord Injury in Adult Rats. Journal of Neurotrauma, 2017, 34, 707-719.	1.7	37
23	Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy. PLoS ONE, 2017, 12, e0170814.	1.1	177
24	Peripheral and Central Neuroinflammatory Changes and Pain Behaviors in an Animal Model of Multiple Sclerosis. Frontiers in Immunology, 2016, 7, 369.	2.2	42
25	Cytokines in Neuropathic Pain and Associated Depression. Modern Problems of Pharmacopsychiatry, 2015, 30, 51-66.	2.5	40
26	Effects of active immunisation with myelin basic protein and myelin-derived altered peptide ligand on pain hypersensitivity and neuroinflammation. Journal of Neuroimmunology, 2015, 286, 59-70.	1.1	12
27	Active immunization with myelin-derived altered peptide ligand reduces mechanical pain hypersensitivity following peripheral nerve injury. Journal of Neuroinflammation, 2015, 12, 28.	3.1	19
28	Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury. Cytokine, 2015, 71, 207-214.	1.4	47
29	The Contribution of Immune and Clial Cell Types in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Multiple Sclerosis International, 2014, 2014, 1-17.	0.4	82
30	Gap junction proteins and their role in spinal cord injury. Frontiers in Molecular Neuroscience, 2014, 7, 102.	1.4	28
31	Animal Models of Neuropathic Pain Due to Nerve Injury. Neuromethods, 2013, , 239-260.	0.2	4
32	Effects of Vaccination with Altered Peptide Ligand on Chronic Pain in Experimental Autoimmune Encephalomyelitis, an Animal Model of Multiple Sclerosis. Frontiers in Neurology, 2013, 4, 168.	1.1	12
33	Neuropathic Pain in Animal Models of Nervous System Autoimmune Diseases. Mediators of Inflammation, 2013, 2013, 1-13.	1.4	16
34	Immunotherapy targeting cytokines in neuropathic pain. Frontiers in Pharmacology, 2013, 4, 142.	1.6	29
35	Chronic Constriction of the Sciatic Nerve and Pain Hypersensitivity Testing in Rats. Journal of Visualized Experiments, 2012, , .	0.2	87
36	Regulatory T cells attenuate neuropathic pain following peripheral nerve injury and experimental autoimmune neuritis. Pain, 2012, 153, 1916-1931.	2.0	119

GILA MOALEM-TAYLOR

#	Article	IF	CITATIONS
37	Role of gap junctions in chronic pain. Journal of Neuroscience Research, 2012, 90, 337-345.	1.3	48
38	Interleukin-17 deficiency improves locomotor recovery and tissue sparing after spinal cord contusion injury in mice. Neuroscience Letters, 2011, 487, 363-367.	1.0	17
39	Interleukin-17 Contributes to Neuroinflammation and Neuropathic Pain Following Peripheral Nerve Injury in Mice. Journal of Pain, 2011, 12, 370-383.	0.7	167
40	Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Research, 2011, 1405, 95-108.	1.1	119
41	A Preconditioning Nerve Lesion Inhibits Mechanical Pain Hypersensitivity following Subsequent Neuropathic Injury. Molecular Pain, 2011, 7, 1744-8069-7-1.	1.0	64
42	The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. Journal of Neuroimmunology, 2010, 229, 26-50.	1.1	513
43	Role of Histamine H ₃ and H ₄ Receptors in Mechanical Hyperalgesia following Peripheral Nerve Injury. NeuroImmunoModulation, 2007, 14, 317-325.	0.9	50
44	Pain and endometriosis. Pain, 2007, 132, S22-S25.	2.0	46
45	Pain hypersensitivity in rats with experimental autoimmune neuritis, an animal model of human inflammatory demyelinating neuropathy. Brain, Behavior, and Immunity, 2007, 21, 699-710.	2.0	42
46	Post-spike excitability indicates changes in membrane potential of isolated C-fibers. Muscle and Nerve, 2007, 36, 172-182.	1.0	13
47	Complement activation contributes to leukocyte recruitment and neuropathic pain following peripheral nerve injury in rats. European Journal of Neuroscience, 2007, 26, 3486-3500.	1.2	36
48	Activity-Dependent Modulation of Axonal Excitability in Unmyelinated Peripheral Rat Nerve Fibers by the 5-HT(3) Serotonin Receptor. Journal of Neurophysiology, 2006, 96, 2963-2971.	0.9	38
49	Immune and inflammatory mechanisms in neuropathic pain. Brain Research Reviews, 2006, 51, 240-264.	9.1	670
50	Chemical mediators enhance the excitability of unmyelinated sensory axons in normal and injured peripheral nerve of the rat. Neuroscience, 2005, 134, 1399-1411.	1.1	79
51	T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience, 2004, 129, 767-777.	1.1	258
52	Beneficial immune activity after CNS injury: prospects for vaccination. Journal of Neuroimmunology, 2001, 113, 185-192.	1.1	104
53	Autoimmune T cells retard the loss of function in injured rat optic nerves. Journal of Neuroimmunology, 2000, 106, 189-197.	1.1	88
54	Passive or Active Immunization with Myelin Basic Protein Promotes Recovery from Spinal Cord Contusion. Journal of Neuroscience, 2000, 20, 6421-6430.	1.7	348

GILA MOALEM-TAYLOR

5

#	Article	IF	CITATIONS
55	Production of Neurotrophins by Activated T Cells: Implications for Neuroprotective Autoimmunity. Journal of Autoimmunity, 2000, 15, 331-345.	3.0	303
56	Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet, The, 2000, 355, 286-287.	6.3	204
57	Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB Journal, 1999, 13, 1207-1217.	0.2	152
58	Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Medicine, 1999, 5, 49-55.	15.2	858
59	The remedy may lie in ourselves: prospects for immune cell therapy in central nervous system protection and repair. Journal of Molecular Medicine, 1999, 77, 713-717.	1.7	67
60	Innate and adaptive immune responses can be beneficial for CNS repair. Trends in Neurosciences, 1999, 22, 295-299.	4.2	326
61	THF-γ2-Mediated Reduction of Pulmonary Metastases and Augmentation of Immunocompetence in C57BL/6 Mice Bearing B16-Melanoma. Journal of Immunotherapy, 1999, 22, 103-113.	1.2	6
62	Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. Journal of Neuroimmunology, 1998, 89, 88-96.	1.1	88
63	Factor XIIIa as a nerveâ€associated transglutaminase. FASEB Journal, 1998, 12, 1163-1171.	0.2	22
			_

64 Pathophysiology of neuropathic pain: inflammatory mediators. , 0, , 77-89.