Renu Chadha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9014019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Pharmaceutical Cocrystals of Gefitinib: A Credible Upswing in Strategic Research to Ameliorate Its Biopharmaceutical Challenges. Crystal Growth and Design, 2022, 22, 2218-2229.	3.0	3
2	Pharmaceutical Cocrystals of Famotidine: Structural and Biopharmaceutical Evaluation. Journal of Pharmaceutical Sciences, 2022, 111, 2788-2798.	3.3	2
3	Emerging Multi-Drug Eutectics: Opportunities and Challenges. AAPS PharmSciTech, 2021, 22, 66.	3.3	13
4	Engineering a Remedy to Modulate and Optimize Biopharmaceutical Properties of Rebamipide by Synthesizing New Cocrystal: In Silico and Experimental Studies. Pharmaceutical Research, 2021, 38, 2129-2145.	3.5	5
5	Implication of Coformer Structural Diversity on Cocrystallization Outcomes of Telmisartan with Improved Biopharmaceutical Performance. AAPS PharmSciTech, 2020, 21, 10.	3.3	10
6	Cocrystals of diacerein: Towards the development of improved biopharmaceutical parameters. International Journal of Pharmaceutics, 2020, 574, 118942.	5.2	16
7	Interaction Map Driven Cocrystallization of Ambrisentan: Structural and Biopharmaceutical Evaluation. Crystal Growth and Design, 2020, 20, 4612-4620.	3.0	4
8	Sustainable synthesis of ambrisentan – syringic acid cocrystal: employing mechanochemistry in the development of novel pharmaceutical solid form. CrystEngComm, 2020, 22, 2507-2516.	2.6	16
9	Cocrystal of 5-Fluorouracil: Characterization and Evaluation of Biopharmaceutical Parameters. AAPS PharmSciTech, 2019, 20, 149.	3.3	33
10	Implication of Differential Surface Anisotropy on Biopharmaceutical Performance of Polymorphic Forms of Ambrisentan. Journal of Pharmaceutical Sciences, 2019, 108, 3792-3802.	3.3	2
11	Daidzein cocrystals: An opportunity to improve its biopharmaceutical parameters. Heliyon, 2019, 5, e02669.	3.2	23
12	What if Cocrystallization Fails for Neutral Molecules? Screening Offered Eutectics as Alternate Pharmaceutical Materials: Leflunomide-a Case Study. Pharmaceutical Sciences, 2019, 25, 235-243.	0.2	6
13	Novel polymorph of ambrisentan: Characterization and stability. Journal of Pharmaceutical and Biomedical Analysis, 2018, 153, 102-109.	2.8	11
14	Conformational flexibility and packing plausibility of repaglinide polymorphs. Journal of Molecular Structure, 2018, 1157, 263-275.	3.6	4
15	Antioxidant-Based Eutectics of Irbesartan: Viable Multicomponent Forms for the Management of Hypertension. AAPS PharmSciTech, 2018, 19, 1191-1204.	3.3	17
16	Crystal Engineering: A Remedy To Tailor the Biopharmaceutical Aspects of Glibenclamide. Crystal Growth and Design, 2018, 18, 105-118.	3.0	26
17	Drug-Drug Multicomponent Solid Forms: Cocrystal, Coamorphous and Eutectic of Three Poorly Soluble Antihypertensive Drugs Using Mechanochemical Approach. AAPS PharmSciTech, 2017, 18, 2279-2290.	3.3	68
18	Multicomponent solid forms of felodipine: preparation, characterisation, physicochemical and <i>in-vivo</i> studies. Journal of Pharmacy and Pharmacology, 2017, 69, 254-264.	2.4	18

RENU CHADHA

#	Article	IF	CITATIONS
19	Is Failure of Cocrystallization Actually a Failure? Eutectic Formation in Cocrystal Screening of Hesperetin. Journal of Pharmaceutical Sciences, 2017, 106, 2026-2036.	3.3	38
20	Cocrystals of Hesperetin: Structural, Pharmacokinetic, and Pharmacodynamic Evaluation. Crystal Growth and Design, 2017, 17, 2386-2405.	3.0	75
21	Supramolecular Cocrystals of Gliclazide: Synthesis, Characterization and Evaluation. Pharmaceutical Research, 2017, 34, 552-563.	3.5	8
22	A new polymorph of ciprofloxacin saccharinate: Structural characterization and pharmaceutical profile. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 7-14.	2.8	12
23	Exploring binding properties of gliclazide with human serum albumin. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1613-1618.	3.6	0
24	Chrysin cocrystals: Characterization and evaluation. Journal of Pharmaceutical and Biomedical Analysis, 2017, 134, 361-371.	2.8	47
25	Novel cocrystals of gliclazide: characterization and evaluation. CrystEngComm, 2016, 18, 2275-2283.	2.6	27
26	Characterization of stress degradation products of duloxetine hydrochloride employing LC–UV/PDA and LC–MS/TOF studies. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121, 39-55.	2.8	12
27	Identification and characterization of stress degradation products of dronedarone hydrochloride employing LC-UV/PDA, LC–MS/TOF and MS n studies. Journal of Pharmaceutical and Biomedical Analysis, 2016, 118, 139-148.	2.8	10
28	Evaluation of compatibility among artemether, pyrimethamine and sulphadoxine using analytical and isothermal calorimetry techniques. Journal of Thermal Analysis and Calorimetry, 2015, 120, 759-769.	3.6	0
29	Near-Infrared Spectroscopy: Effective Tool for Screening of Polymorphs in Pharmaceuticals. Applied Spectroscopy Reviews, 2015, 50, 565-583.	6.7	23
30	Cocrystals of telmisartan: characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm, 2014, 16, 8375-8389.	2.6	43
31	Characterization and Evaluation of Multi-Component Crystals of Hydrochlorothiazide. Pharmaceutical Research, 2014, 31, 2479-2489.	3.5	11
32	Valsartan inclusion by methyl-β-cyclodextrin: Thermodynamics, molecular modelling, Tween 80 effect and evaluation. Carbohydrate Polymers, 2014, 103, 300-309.	10.2	30
33	Drug–excipient compatibility screening—Role of thermoanalytical and spectroscopic techniques. Journal of Pharmaceutical and Biomedical Analysis, 2014, 87, 82-97.	2.8	176
34	Thermoanalytical and spectroscopic studies on different crystal forms of nevirapine. Journal of Thermal Analysis and Calorimetry, 2013, 111, 2133-2142.	3.6	9
35	Characterization, quantification and stability of differently prepared amorphous forms of some oral hypoglycaemic agents. Pharmaceutical Development and Technology, 2013, 18, 504-514.	2.4	10
36	Characterisation and evaluation of pharmaceutical solvates of Atorvastatin calcium by thermoanalytical and spectroscopic studies. Chemistry Central Journal, 2012, 6, 114.	2.6	24

Renu Chadha

#	Article	IF	CITATIONS
37	Exploring the potential of lecithin/chitosan nanoparticles in enhancement of antihypertensive efficacy of hydrochlorothiazide. Journal of Microencapsulation, 2012, 29, 805-812.	2.8	28
38	Preparation and Solid-State Characterization of Three Novel Multicomponent Solid Forms of Oxcarbazepine: Improvement in Solubility through Saccharin Cocrystal. Crystal Growth and Design, 2012, 12, 4211-4224.	3.0	34
39	An Insight into Thermodynamic Relationship Between Polymorphic Forms of Efavirenz. Journal of Pharmacy and Pharmaceutical Sciences, 2012, 15, 234.	2.1	22
40	Artesunate-loaded chitosan/lecithin nanoparticles: Preparation, characterization, and <i>in vivo</i> studies. Drug Development and Industrial Pharmacy, 2012, 38, 1538-1546.	2.0	51
41	Effect of hydrophilic polymer on complexing efficiency of cyclodextrins towards efavirenz-characterization and thermodynamic parameters. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72, 275-287.	1.6	7
42	Crystal habit, characterization and pharmacological activity of various crystal forms of arteether. Acta Pharmaceutica Sinica B, 2011, 1, 129-135.	12.0	8
43	Interaction of artesunate with β-cyclodextrin: Characterization, thermodynamic parameters, molecular modeling, effect of PEG on complexation and antimalarial activity. Results in Pharma Sciences, 2011, 1, 38-48.	4.2	19
44	Characterization and in vivo efficacy of inclusion complexes of sulphadoxine with β-cyclodextrin: calorimetric and spectroscopic studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 149-159.	1.6	9
45	Complexation of nevirapine with β-cyclodextrins in the presence and absence of Tween 80: characterization, thermodynamic parameters, and permeability flux. Journal of Thermal Analysis and Calorimetry, 2011, 105, 1049-1059.	3.6	10
46	Solvated Crystalline Forms of Nevirapine: Thermoanalytical and Spectroscopic Studies. AAPS PharmSciTech, 2010, 11, 1328-1339.	3.3	31
47	Encapsulation of rifampicin by natural and modified β-cyclodextrins: characterization and thermodynamic parameters. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 67, 109-116.	1.6	10
48	Characterization of solvatomorphs of methotrexate using thermoanalytical and other techniques. Acta Pharmaceutica, 2009, 59, 245-57.	2.0	38
49	Studies on the Crystal forms of Pefloxacin: Preparation, Characterization, and Dissolution Profile. Journal of Pharmaceutical Sciences, 2008, 97, 2637-2648.	3.3	10
50	Binding constants of inclusion complexes of nitroimidazoles with β-cyclodextrins in the absence and presence of PVP. Thermochimica Acta, 2007, 459, 111-115.	2.7	18
51	Crystal Forms of Anti-HIV Drugs: Role of Recrystallization. , 0, , .		1