
Shahriar Sajjadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9013678/publications.pdf Version: 2024-02-01

SHAHDIAD SAIIADI

#	Article	IF	CITATIONS
1	"On-the-Fly―Fabrication of Highly-Ordered Interconnected Cylindrical and Spherical Porous Microparticles via Dual Polymerization Zone Microfluidics. Langmuir, 2019, 35, 12731-12743.	3.5	5
2	Transformable bubble-filled alginate microfibers <i>via</i> vertical microfluidics. Lab on A Chip, 2019, 19, 851-863.	6.0	15
3	Twoâ€stage stabilizer addition protocol as a means to reduce the size and improve the uniformity of polymer beads in suspension polymerization. Journal of Applied Polymer Science, 2018, 135, 45671.	2.6	2
4	Suppressing Coalescence and Improving Uniformity of Polymer Beads in Suspension Polymerization Using a Two-Stage Stirring Protocol. Industrial & Engineering Chemistry Research, 2018, 57, 11883-11892.	3.7	9
5	Ultrafine nanolatexes made via monomer-starved semicontinuous emulsion polymerisation in the presence of a water-soluble chain transfer agent. European Polymer Journal, 2016, 80, 89-98.	5.4	2
6	Flexible Asymmetric Encapsulation for Dehydrationâ€Responsive Hybrid Microfibers. Small, 2016, 12, 4146-4155.	10.0	29
7	Uniform polymer beads by membrane emulsification-assisted suspension polymerisation. RSC Advances, 2016, 6, 79745-79754.	3.6	8
8	Control of particle size by feed composition in the nanolatexes produced via monomer-starved semicontinuous emulsion copolymerization. Journal of Colloid and Interface Science, 2015, 445, 174-182.	9.4	14
9	Large Ultrathin Shelled Drops Produced via Non onfined Microfluidics. ChemPhysChem, 2015, 16, 403-411.	2.1	11
10	Buoyancy-driven drop generation via microchannel revisited. Microfluidics and Nanofluidics, 2015, 18, 943-953.	2.2	9
11	Extending the limits of emulsifier-free emulsion polymerization to achieve small uniform particles. RSC Advances, 2015, 5, 58549-58560.	3.6	10
12	Exploring the limits of particle size for nanolatexes produced via monomer-starved semicontinuous emulsion polymerization. European Polymer Journal, 2015, 69, 364-373.	5.4	7
13	Millimetric core–shell drops via buoyancy assisted non-confined microfluidics. Chemical Engineering Science, 2015, 129, 260-270.	3.8	17
14	Microfluidic method for creating monodisperse viscous single emulsions via core–shell templating. Microfluidics and Nanofluidics, 2015, 18, 383-390.	2.2	8
15	Temperature-triggered disintegrable poly(N-isopropylacrylamide) nanoparticles via heterophase polymerization in the presence of tetramethylethylenediamine and sodium dodecyl sulfate. Journal of Applied Polymer Science, 2014, 131, n/a-n/a.	2.6	3
16	Electrophoretic manipulation of multiple-emulsion droplets. Applied Physics Letters, 2014, 104, .	3.3	15
17	Controlling the surface charge of water droplets in non-polar oils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461, 18-21.	4.7	14
18	Temperature-triggered fast-disintegrating polyNIPAM particles via semicontinuous heterophase polymerisation. Colloid and Polymer Science, 2014, 292, 1319-1328.	2.1	4

Shahriar Sajjadi

#	Article	IF	CITATIONS
19	Thermal Effects in Nanoemulsification by Ultrasound. Industrial & Engineering Chemistry Research, 2013, 52, 9683-9689.	3.7	14
20	Thermosensitive capsules via a facile water-based core-removal process. Polymer, 2013, 54, 5467-5472.	3.8	8
21	Charge of water droplets in non-polar oils. Journal of Applied Physics, 2013, 114, .	2.5	18
22	Dilute nanoemulsions via separation of satellite droplets. Journal of Colloid and Interface Science, 2013, 407, 354-360.	9.4	3
23	On the growth mechanisms of nanoemulsions. Journal of Colloid and Interface Science, 2013, 397, 154-162.	9.4	109
24	Semicontinuous Monomer-Starved Emulsion Polymerization as a Means to Produce Nanolatexes: Analysis of Nucleation Stage. Langmuir, 2013, 29, 5650-5658.	3.5	26
25	Viscosity effects in miniemulsification via ultrasound. AICHE Journal, 2010, 56, 2751-2755.	3.6	17
26	Dynamics of Transitional Phase Inversion Emulsification: Effect of Addition Time on the Type of Inversion and Drop Size. Industrial & Engineering Chemistry Research, 2010, 49, 7631-7637.	3.7	25
27	Population balance modeling of particle size distribution in monomerâ€starved semibatch emulsion polymerization. AICHE Journal, 2009, 55, 3191-3205.	3.6	35
28	Particle formation and growth in ab initio emulsifier-free emulsion polymerisation under monomer-starved conditions. Polymer, 2009, 50, 357-365.	3.8	27
29	Catastrophic phase inversion via formation of multiple emulsions: A prerequisite for formation of fine emulsions. Chemical Engineering Research and Design, 2009, 87, 492-498.	5.6	64
30	Synthesis and characterization of gold nanoshells using poly(diallyldimethyl ammonium chloride). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329, 134-141.	4.7	27
31	In situ mass-suspension polymerisation. Chemical Engineering Science, 2008, 63, 4412-4417.	3.8	20
32	Composite Polymer Nanoparticles via Transitional Phase Inversion Emulsification and Polymerisation. Macromolecular Symposia, 2007, 259, 145-150.	0.7	5
33	Nanoparticle Formation by Monomer-Starved Semibatch Emulsion Polymerization. Langmuir, 2007, 23, 1018-1024.	3.5	81
34	Preparation of Polymerizable Hybrid Miniemulsions by Transitional Phase Inversion Emulsification. Macromolecules, 2007, 40, 4182-4189.	4.8	5
35	Formation of fine emulsions by emulsification at high viscosity or low interfacial tension; A comparative study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299, 73-78.	4.7	32
36	Nanoemulsion Formation by Phase Inversion Emulsification:Â On the Nature of Inversion. Langmuir, 2006, 22, 5597-5603.	3.5	118

SHAHRIAR SAJJADI

#	Article	IF	CITATIONS
37	Effect of mixing protocol on formation of fine emulsions. Chemical Engineering Science, 2006, 61, 3009-3017.	3.8	52
38	Nanoparticle formation by highly diffusion-controlled emulsion polymerisation. Chemical Engineering Science, 2006, 61, 3001-3008.	3.8	26
39	Characteristic intervals in suspension polymerisation reactors: An experimental and modelling study. Chemical Engineering Science, 2005, 60, 5574-5589.	3.8	46
40	Comparative Study of Particle Size in Suspension Polymerization and Corresponding Monomerâ^'Water Dispersion. Industrial & Engineering Chemistry Research, 2005, 44, 4112-4119.	3.7	50
41	Diffusion-Controlled Particle Growth and its Effects on Nucleation in Stirred Emulsion Polymerisation Reactors. Macromolecular Rapid Communications, 2004, 25, 882-887.	3.9	9
42	Catastrophic phase inversion of abnormal emulsions in the vicinity of the locus of transitional inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 240, 149-155.	4.7	46
43	On the evolution of particle size average and size distribution in suspension polymerization processes. Macromolecular Symposia, 2004, 206, 255-262.	0.7	27
44	Analysis of particle formation under monomer-starved conditions in emulsion polymerization reactors. Macromolecular Symposia, 2004, 206, 201-214.	0.7	4
45	Particle formation under monomer-starved conditions in the semibatch emulsion polymerisation of styrene. Part II. Mathematical modelling. Polymer, 2003, 44, 223-237.	3.8	28
46	Semibatch Emulsion Polymerization of Methyl Methacrylate with a Neat Monomer Feed. Polymer-Plastics Technology and Engineering, 2003, 11, 715-736.	0.7	48
47	Phase Inversion in Abnormal O/W/O Emulsions:Â I. Effect of Surfactant Concentration. Industrial & Engineering Chemistry Research, 2002, 41, 6033-6041.	3.7	47
48	Particle formation in interval III of the emulsion polymerization of styrene with aerosol-MA as an emulsifier. Journal of Polymer Science Part A, 2002, 40, 1652-1663.	2.3	7