Carlos Villaseca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9013411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos, 1998, 43, 55-79.	1.4	159
2	A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1998, 89, 113-119.	0.7	155
3	Nature and Composition of the Lower Continental Crust in Central Spain and the Granulite-Granite Linkage: Inferences from Granulitic Xenoliths. Journal of Petrology, 1999, 40, 1465-1496.	2.8	117
4	Geochemical and isotopic disequilibrium in crustal melting: An insight from the anatectic granitoids from Toledo, Spain. Journal of Geophysical Research, 1995, 100, 15745-15765.	3.3	100
5	Occurrence and Origin of Andalusite in Peraluminous Felsic Igneous Rocks. Journal of Petrology, 2005, 46, 441-472.	2.8	89
6	Residence and redistribution of REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major phases in peraluminous granulites of central Spain. Chemical Geology, 2003, 200, 293-323.	3.3	70
7	Petrogenesis of Permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe. Contributions To Mineralogy and Petrology, 2008, 156, 477-500.	3.1	70
8	Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: Geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geology Reviews, 2018, 95, 408-430.	2.7	63
9	SHRIMP U–Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: implications in the Hercynian evolution of Central Iberia. International Journal of Earth Sciences, 2008, 97, 35-50.	1.8	56
10	Ediacaran–Cambrian paleogeography and geodynamic setting of the Central Iberian Zone: Constraints from coupled U–Pb–Hf isotopes of detrital zircons. Precambrian Research, 2015, 261, 234-251.	2.7	55
11	The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: A review. Earth-Science Reviews, 2018, 176, 345-372.	9.1	53
12	Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: Implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Research, 2014, 245, 131-145.	2.7	52
13	Geochemistry of pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish Central System. Lithos, 2006, 86, 167-196.	1.4	46
14	Geochronology and trace element chemistry of zircon and garnet from granulite xenoliths: Constraints on the tectonothermal evolution of the lower crust under central Spain. Lithos, 2011, 124, 103-116.	1.4	45
15	Zircon Hf signatures from granitic orthogneisses of the Spanish Central System: Significance and sources of the Cambro-Ordovician magmatism in the Iberian Variscan Belt. Gondwana Research, 2016, 34, 60-83.	6.0	45
16	Eclogite facies relics in metabasites from the Sierra de Guadarrama (Spanish Central System): P-T estimations and implications for the Hercynian evolution. Mineralogical Magazine, 2000, 64, 815-836.	1.4	44
17	Origin, ore forming fluid evolution and timing of the Logrosán Sn–(W) ore deposits (Central Iberian) Tj ETQq1	1 0,78431 2.7	L4 rgBT /Ov∈

18 The Variscan gabbros from the Spanish Central System: A case for crustal recycling in the sub-continental lithospheric mantle?. Lithos, 2009, 110, 262-276.

1.4 43

CARLOS VILLASECA

#	Article	IF	CITATIONS
19	A Uâ€₽b Study of Zircons from a Lower Crustal Granulite Xenolith of the Spanish Central System: A Record of Iberian Lithospheric Evolution from the Neoproterozoic to the Triassic. Journal of Geology, 2006, 114, 471-483.	1.4	41
20	THE COMPOSITION OF ZIRCON IN THE PERALUMINOUS HERCYNIAN GRANITES OF THE SPANISH CENTRAL SYSTEM BATHOLITH. Canadian Mineralogist, 2007, 45, 509-527.	1.0	40
21	Multiple crustal sources for post-tectonic I-type granites in the Hercynian Iberian Belt. Mineralogy and Petrology, 2009, 96, 197-211.	1.1	40
22	Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: The BelvÃs de Monroy leucogranite (Cáceres, Spain). Lithos, 2013, 179, 137-156.	1.4	40
23	The Layos Granite, Hercynian Complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83, 127-138.	0.3	37
24	Recycled metaigneous crustal sources for S- and I-type Variscan granitoids from the Spanish Central System batholith: Constraints from Hf isotope zircon composition. Lithos, 2012, 153, 84-93.	1.4	37
25	U–Pb geochronology and zircon composition of late Variscan S- and I-type granitoids from the Spanish Central System batholith. International Journal of Earth Sciences, 2012, 101, 1789-1815.	1.8	36
26	The architecture of the European-Mediterranean lithosphere: A synthesis of the Re-Os evidence. Geology, 2013, 41, 547-550.	4.4	34
27	Chemical variability of Al-Ti-Fe-Mg minerals in peraluminous granitoid rocks from Central Spain. European Journal of Mineralogy, 1994, 6, 691-710.	1.3	34
28	Zr–LREE rich minerals in residual peraluminous granulites, another factor in the origin of low Zr–LREE granitic melts?. Lithos, 2007, 96, 375-386.	1.4	33
29	Le magmatisme basique hercynien et post-hercynien du Système central espagnol : essai de caractérisation des sources mantelliques. Comptes Rendus - Geoscience, 2004, 336, 877-888.	1.2	30
30	Significance of ancient sulfide PGE and Re–Os signatures in the mantle beneath Calatrava, Central Spain. Contributions To Mineralogy and Petrology, 2014, 168, 1.	3.1	30
31	A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2000, 91, 207-219.	0.3	29
32	Metaluminous pyroxene-bearing granulite xenoliths from the lower continental crust in central Spain: their role in the genesis of Hercynian I-type granites. European Journal of Mineralogy, 2007, 19, 463-477.	1.3	28
33	Early Ordovician metabasites from the Spanish Central System: A remnant of intraplate HP rocks in the Central Iberian Zone. Gondwana Research, 2015, 27, 392-409.	6.0	28
34	Geology and gravity modeling of the Logrosán Sn–(W) ore deposits (Central Iberian Zone, Spain). Ore Geology Reviews, 2015, 65, 294-307.	2.7	28
35	Tracing magma sources of three different S-type peraluminous granitoid series by in situ U–Pb geochronology and Hf isotope zircon composition: The Variscan Montes de Toledo batholith (central) Tj ETQq1 	1 01748431	.4 rg&T /Over
36	Composition and evolution of the lithospheric mantle in central Spain: inferences from peridotite xenoliths from the Cenozoic Calatrava volcanic field. Geological Society Special Publication, 2010, 337, 125-151.	1.3	24

CARLOS VILLASECA

#	Article	IF	CITATIONS
37	The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy. Journal of Geodynamics, 2012, 58, 29-37.	1.6	22
38	Uranium-rich accessory minerals in the peraluminous and perphosphorous BelvÃs de Monroy pluton (Iberian Variscan belt). Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	22
39	Presence of Palaeoproterozoic and Archean components in the granulite-facies rocks of central Iberia: The Hf isotopic evidence. Precambrian Research, 2011, 187, 143-154.	2.7	21
40	U–Pb isotopic ages and Hf isotope composition of zircons in Variscan gabbros from central Spain: evidence of variable crustal contamination. Mineralogy and Petrology, 2011, 101, 151-167.	1.1	21
41	Long-term thermo-tectonic evolution of the Montes de Toledo area (Central Hercynian Belt, Spain): constraints from apatite fission-track analysis. International Journal of Earth Sciences, 2005, 94, 193-203.	1.8	20
42	Melts and residua geochemistry in a low-to-mid crustal section (Central Spain). Physics and Chemistry of the Earth, 2001, 26, 273-280.	0.6	18
43	Mineral chemistry of megacrysts and associated clinopyroxenite enclaves in the Calatrava volcanic field: crystallization processes in mantle magma chambers. Journal of Iberian Geology, 2019, 45, 401-426.	1.3	18
44	Geochemistry of mafic phenocrysts from alkaline lamprophyres of the Spanish Central System: implications on crystal fractionation, magma mixing and xenoliths entrapment within deep magma chambers. European Journal of Mineralogy, 2007, 19, 817-832.	1.3	16
45	Dating metasomatic events in the lithospheric mantle beneath the Calatrava volcanic field (central) Tj ETQq1 1 0	.784314 r 1.4	gBT_/Overloc
46	Geochemistry and geochronology of mafic rocks from the Spanish Central System: Constraints on the mantle evolution beneath central Spain. Geoscience Frontiers, 2020, 11, 1651-1667.	8.4	14
47	Electron microprobe monazite geochronology of granitic intrusions from the Montes de Toledo batholith (central Spain). Geological Journal, 2012, 47, 41-58.	1.3	13
48	Pyroxenites and Megacrysts From Alkaline Melts of the Calatrava Volcanic Field (Central Spain): Inferences From Trace Element Geochemistry and Sr-Nd Isotope Composition. Frontiers in Earth Science, 2020, 8, .	1.8	13
49	Contrasted crustal sources for peraluminous granites of the segmented Montes de Toledo Batholith (Iberian Variscan Belt). Journal of Geosciences (Czech Republic), 2012, , 263-280.	0.6	12
50	Hydrothermal phosphate vein-type ores from the southern Central Iberian Zone, Spain: Evidence for their relationship to granites and Neoproterozoic metasedimentary rocks. Ore Geology Reviews, 2014, 62, 143-155.	2.7	12
51	The evolution of the subcontinental mantle beneath the Central Iberian Zone: Geochemical tracking of its mafic magmatism from the Neoproterozoic to the Cenozoic. Earth-Science Reviews, 2022, 228, 103997.	9.1	10
52	Mineralogical and isotopic characterization of graphite deposits from the Anatectic Complex of Toledo, central Spain. Mineralium Deposita, 2016, 51, 575-590.	4.1	9
53	Basic Ordovician magmatism of the Spanish Central System: Constraints on the source and geodynamic setting. Lithos, 2017, 284-285, 608-624.	1.4	9
54	Zircon U-Pb and Hf isotopic constraints on the genesis of a post-kinematic S-type Variscan tin granite: the Logrosán cupola (Central Iberian Zone). Journal of Iberian Geology, 2014, 40, .	1.3	8

CARLOS VILLASECA

#	Article	IF	CITATIONS
55	Diques camptonÃŧicos en el Sistema Central Español. Estudios Geologicos, 1986, 42, 69-78.	0.2	7
56	Heterogeneous metasomatism in cumulate xenoliths from the Spanish Central System: implications for percolative fractional crystallization of lamprophyric melts. Geological Society Special Publication, 2008, 293, 101-120.	1.3	6
57	Magmatic graphite inclusions in Mn-Fe-rich fluorapatite of perphosphorus granites (the BelvÃs pluton,) Tj ETQq1	0.78431 1.9	4 ₅ gBT /Ove
58	Li-Na-metasomatism related to I-type granite magmatism: A case study of the highly fractionated La Pedriza pluton (Iberian Variscan belt). Lithos, 2019, 344-345, 159-174.	1.4	5
59	Depleted lherzolite xenoliths from the leucititic Morrón de Villamayor volcano (Calatrava volcanic) Tj ETQq1 1 0.	784314 rg 1.4	BJ /Overloc
60	Subduction-related metasomatism in the lithospheric mantle beneath the Calatrava volcanic field (central Spain): constraints from lherzolite xenoliths of the Cerro Gordo volcano. International Geology Review, 2022, 64, 469-488.	2.1	3
61	Microdioritas de afinidad toleÃtica en las bandas de cizalla de Segovia. Estudios Geologicos, 1985, 41, 11-16.	0.2	2
62	A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System. , 2000, , .		1
63	Mineral chemistry of late Variscan gabbros from central Spain: constraints on crystallisation processes and nature of the parental magmas. Journal of Iberian Geology, 2015, 41, .	1.3	1