
Esther K Diekhof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9013070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Testosterone and estradiol affect adolescent reinforcement learning. PeerJ, 2022, 10, e12653.	2.0	1
2	Dopamine multilocus genetic profiles predict sex differences in reactivity of the human reward system. Brain Structure and Function, 2021, 226, 1099-1114.	2.3	7
3	The Straw That Broke the Camel's Back: Natural Variations in 17β-Estradiol and COMT-Val158Met Genotype Interact in the Modulation of Model-Free and Model-Based Control. Frontiers in Behavioral Neuroscience, 2021, 15, 658769.	2.0	1
4	Daytime and season do not affect reinforcement learning capacity in a response time adjustment task. Chronobiology International, 2021, 38, 1-7.	2.0	1
5	Avoidance Learning Across the Menstrual Cycle: A Conceptual Replication. Frontiers in Endocrinology, 2020, 11, 231.	3.5	8
6	Resilience to adversity is associated with increased activity and connectivity in the VTA and hippocampus. NeuroImage: Clinical, 2019, 23, 101920.	2.7	22
7	How Stereotypes Affect Pain. Scientific Reports, 2019, 9, 8626.	3.3	9
8	Endogenous testosterone correlates with parochial altruism in relation to costly punishment in different social settings. PeerJ, 2019, 7, e7537.	2.0	4
9	Estradiol and the reward system in humans. Current Opinion in Behavioral Sciences, 2018, 23, 58-64.	3.9	21
10	Effects of the experimental administration of oral estrogen on prefrontal functions in healthy young women. Psychopharmacology, 2018, 235, 3465-3477.	3.1	13
11	Endogenous testosterone and exogenous oxytocin influence the response to baby schema in the female brain. Scientific Reports, 2018, 8, 7672.	3.3	14
12	DAT1-Genotype and Menstrual Cycle, but Not Hormonal Contraception, Modulate Reinforcement Learning: Preliminary Evidence. Frontiers in Endocrinology, 2018, 9, 60.	3.5	15
13	Effects of city living on the mesolimbic reward system—An fmri study. Human Brain Mapping, 2017, 38, 3444-3453.	3.6	14
14	Neural substrates of male parochial altruism are modulated by testosterone and behavioral strategy. NeuroImage, 2017, 156, 265-276.	4.2	12
15	The association between endogenous testosterone level and behavioral flexibility in young men – Evidence from stimulus-outcome reversal learning. Hormones and Behavior, 2017, 89, 193-200.	2.1	6
16	Endogenous Testosterone and Exogenous Oxytocin Modulate Attentional Processing of Infant Faces. PLoS ONE, 2016, 11, e0166617.	2.5	21
17	Investigating the Impact of a Genome-Wide Supported Bipolar Risk Variant of MAD1L1 on the Human Reward System. Neuropsychopharmacology, 2016, 41, 2679-2687.	5.4	22
18	<i>CREB1</i> Genotype Modulates Adaptive Reward-Based Decisions in Humans. Cerebral Cortex, 2016, 26, 2970-2981.	2.9	12

ESTHER K DIEKHOF

#	Article	IF	CITATIONS
19	Gender Differences in Verbal and Visuospatial Working Memory Performance and Networks. Neuropsychobiology, 2016, 73, 52-63.	1.9	46
20	Menstrual cycle phase modulates reward sensitivity and performance monitoring in young women: Preliminary fMRI evidence. Neuropsychologia, 2016, 84, 70-80.	1.6	51
21	Testosterone is associated with cooperation during intergroup competition by enhancing parochial altruism. Frontiers in Neuroscience, 2015, 9, 183.	2.8	57
22	Be quick about it. Endogenous estradiol level, menstrual cycle phase and trait impulsiveness predict impulsive choice in the context of reward acquisition. Hormones and Behavior, 2015, 74, 186-193.	2.1	41
23	Dissociating pathomechanisms of depression with fMRI: bottom-up or top-down dysfunctions of the reward system. European Archives of Psychiatry and Clinical Neuroscience, 2015, 265, 57-66.	3.2	22
24	On the role of the anterior prefrontal cortex in cognitive â€~branching': An fMRI study. Neuropsychologia, 2015, 77, 421-429.	1.6	12
25	Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia. Journal of Psychiatric Research, 2015, 71, 8-15.	3.1	18
26	How to be patient. The ability to wait for a reward depends on menstrual cycle phase and feedback-related activity. Frontiers in Neuroscience, 2014, 8, 401.	2.8	21
27	Disturbed Anterior Prefrontal Control of the Mesolimbic Reward System and Increased Impulsivity in Bipolar Disorder. Neuropsychopharmacology, 2014, 39, 1914-1923.	5.4	56
28	A functional neuroimaging study assessing gender differences in the neural mechanisms underlying the ability to resist impulsive desires. Brain Research, 2012, 1473, 63-77.	2.2	47
29	Impulsive personality and the ability to resist immediate reward: An fMRI study examining interindividual differences in the neural mechanisms underlying selfâ€control. Human Brain Mapping, 2012, 33, 2768-2784.	3.6	53
30	The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude – An activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia, 2012, 50, 1252-1266.	1.6	281
31	Fear is only as deep as the mind allows. NeuroImage, 2011, 58, 275-285.	4.2	367
32	The power of imagination — How anticipatory mental imagery alters perceptual processing of fearful facial expressions. NeuroImage, 2011, 54, 1703-1714.	4.2	33
33	The orbitofrontal cortex and its role in the assignment of behavioural significance. Neuropsychologia, 2011, 49, 984-991.	1.6	27
34	A neural system for evaluating the behavioural relevance of salient events outside the current focus of attention. Brain Research, 2010, 1351, 212-221.	2.2	24
35	When Desire Collides with Reason: Functional Interactions between Anteroventral Prefrontal Cortex and Nucleus Accumbens Underlie the Human Ability to Resist Impulsive Desires. Journal of Neuroscience, 2010, 30, 1488-1493.	3.6	120
36	Top-down and bottom-up modulation of brain structures involved in auditory discrimination. Brain Research, 2009, 1297, 118-123.	2.2	13

#	Article	IF	CITATIONS
37	Functional interactions guiding adaptive processing of behavioral significance. Human Brain Mapping, 2009, 30, 3325-3331.	3.6	14
38	Brain mechanisms associated with background monitoring of the environment for potentially significant sensory events. Brain and Cognition, 2009, 69, 559-564.	1.8	26
39	Functional neuroimaging of reward processing and decision-making: A review of aberrant motivational and affective processing in addiction and mood disorders. Brain Research Reviews, 2008, 59, 164-184.	9.0	146