List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9012363/publications.pdf Version: 2024-02-01

		8755	6131
258	27,385	75	159
papers	citations	h-index	g-index
			1-000
273	273	273	15803
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	H ₂ S as a Physiologic Vasorelaxant: Hypertension in Mice with Deletion of Cystathionine γ-Lyase. Science, 2008, 322, 587-590.	12.6	2,104
2	Two's company, three's a crowd: can H ₂ S be the third endogenous gaseous transmitter?. FASEB Journal, 2002, 16, 1792-1798.	0.5	1,639
3	Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed. Physiological Reviews, 2012, 92, 791-896.	28.8	1,618
4	H ₂ S Signals Through Protein S-Sulfhydration. Science Signaling, 2009, 2, ra72.	3.6	1,050
5	Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacological Reviews, 2005, 57, 585-630.	16.0	822
6	Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21972-21977.	7.1	768
7	Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nature Reviews Drug Discovery, 2015, 14, 329-345.	46.4	652
8	Hydrogen Sulfide as Endothelium-Derived Hyperpolarizing Factor Sulfhydrates Potassium Channels. Circulation Research, 2011, 109, 1259-1268.	4.5	531
9	Hydrogen Sulfide Protects Against Cellular Senescence <i>via S</i> -Sulfhydration of Keap1 and Activation of Nrf2. Antioxidants and Redox Signaling, 2013, 18, 1906-1919.	5.4	484
10	Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits. Cell, 2015, 160, 132-144.	28.9	449
11	The Gasotransmitter Role of Hydrogen Sulfide. Antioxidants and Redox Signaling, 2003, 5, 493-501.	5.4	447
12	H ₂ S-induced vasorelaxation and underlying cellular and molecular mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H474-H480.	3.2	429
13	Activation of KATPchannels by H2S in rat insulin-secreting cells and the underlying mechanisms. Journal of Physiology, 2005, 569, 519-531.	2.9	426
14	Hydrogen sulfide (H ₂ S) metabolism in mitochondria and its regulatory role in energy production. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2943-2948.	7.1	397
15	Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2316-H2323.	3.2	367
16	Decreased Endogenous Production of Hydrogen Sulfide Accelerates Atherosclerosis. Circulation, 2013, 127, 2523-2534.	1.6	322
17	H ₂ S Protects Against Pressure Overload–Induced Heart Failure via Upregulation of Endothelial Nitric Oxide Synthase. Circulation, 2013, 127, 1116-1127.	1.6	302
18	Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3182-3187.	7.1	301

#	Article	IF	CITATIONS
19	Carbon monoxideâ€induced vasorelaxation and the underlying mechanisms. British Journal of Pharmacology, 1997, 121, 927-934.	5.4	288
20	Proâ€apoptotic effect of endogenous H 2 S on human aorta smooth muscle cells. FASEB Journal, 2006, 20, 553-555.	0.5	286
21	Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radical Biology and Medicine, 2011, 50, 1021-1031.	2.9	278
22	Hydrogen sulfideâ€induced apoptosis of human aorta smooth muscle cells via the activation of mitogenâ€activated protein kinases and caspaseâ€3. FASEB Journal, 2004, 18, 1782-1784.	0.5	267
23	Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7094-7099.	7.1	258
24	Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13829-13834.	7.1	254
25	Gasotransmitters: growing pains and joys. Trends in Biochemical Sciences, 2014, 39, 227-232.	7.5	251
26	Direct Stimulation of KATP Channels by Exogenous and Endogenous Hydrogen Sulfide in Vascular Smooth Muscle Cells. Molecular Pharmacology, 2005, 68, 1757-1764.	2.3	250
27	Hydrogen Sulfide: The Third Gasotransmitter in Biology and Medicine. Antioxidants and Redox Signaling, 2010, 12, 1061-1064.	5.4	237
28	Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell, 2018, 173, 117-129.e14.	28.9	229
29	Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2011, 414, 481-486.	2.1	225
30	Dysregulation of Hydrogen Sulfide Producing Enzyme Cystathionine Î ³ -Iyase Contributes to Maternal Hypertension and Placental Abnormalities in Preeclampsia. Circulation, 2013, 127, 2514-2522.	1.6	224
31	The Chemical Modification of KCa Channels by Carbon Monoxide in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1997, 272, 8222-8226.	3.4	222
32	Modulation of endogenous production of H2S in rat tissues. Canadian Journal of Physiology and Pharmacology, 2003, 81, 848-853.	1.4	208
33	Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Laboratory Investigation, 2009, 89, 59-67.	3.7	190
34	Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radical Biology and Medicine, 2012, 52, 2276-2283.	2.9	190
35	Molecular Mechanism for H ₂ S-Induced Activation of K _{ATP} Channels. Antioxidants and Redox Signaling, 2010, 12, 1167-1178.	5.4	179
36	Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. Journal of Applied Physiology, 2006, 100, 1065-1076.	2.5	177

#	Article	IF	CITATIONS
37	Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12679-12684.	7.1	175
38	H2S, Endoplasmic Reticulum Stress, and Apoptosis of Insulin-secreting Beta Cells. Journal of Biological Chemistry, 2007, 282, 16567-16576.	3.4	174
39	The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Science Signaling, 2014, 7, ra87.	3.6	169
40	Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2006, 351, 485-491.	2.1	164
41	Cystathionine Î ³ -Lyase Protects against Renal Ischemia/Reperfusion by Modulating Oxidative Stress. Journal of the American Society of Nephrology: JASN, 2013, 24, 759-770.	6.1	157
42	S- Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacological Research, 2016, 113, 116-124.	7.1	156
43	Hydrogen Sulfide Inhibits Plasma Renin Activity. Journal of the American Society of Nephrology: JASN, 2010, 21, 993-1002.	6.1	151
44	Hydrogen Sulfide Protects from Colitis and Restores Intestinal Microbiota Biofilm and Mucus Production. Inflammatory Bowel Diseases, 2015, 21, 1006-1017.	1.9	150
45	Cystathionine Î ³ -Lyase Overexpression Inhibits Cell Proliferation via a H2S-dependent Modulation of ERK1/2 Phosphorylation and p21Cip/WAK-1. Journal of Biological Chemistry, 2004, 279, 49199-49205.	3.4	142
46	Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovascular Research, 2010, 86, 487-495.	3.8	142
47	Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. Journal of Cellular and Molecular Medicine, 2013, 17, 879-888.	3.6	140
48	Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Canadian Journal of Physiology and Pharmacology, 1998, 76, 1-15.	1.4	139
49	Interaction of hydrogen sulfide with ion channels. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 753-763.	1.9	138
50	Hydrogen sulfide: a new EDRF. Kidney International, 2009, 76, 700-704.	5.2	136
51	Hydrogen sulfide and the liver. Nitric Oxide - Biology and Chemistry, 2014, 41, 62-71.	2.7	134
52	The role of H2S bioavailability in endothelial dysfunction. Trends in Pharmacological Sciences, 2015, 36, 568-578.	8.7	131
53	Protective Effect of Hydrogen Sulfide on Balloon Injury-Induced Neointima Hyperplasia in Rat Carotid Arteries. American Journal of Pathology, 2007, 170, 1406-1414.	3.8	128
54	Calcium and polyamine regulated calciumâ€sensing receptors in cardiac tissues. FEBS Journal, 2003, 270, 2680-2688.	0.2	126

#	Article	lF	CITATIONS
55	Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. Free Radical Biology and Medicine, 2005, 38, 286-293.	2.9	126
56	Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Communications Biology, 2019, 2, 194.	4.4	126
57	H ₂ S Is an Endothelium-Derived Hyperpolarizing Factor. Antioxidants and Redox Signaling, 2013, 19, 1634-1646.	5.4	119
58	Sâ€sulfhydration of <scp>MEK</scp> 1 leads to <scp>PARP</scp> â€1 activation and <scp>DNA</scp> damage repair. EMBO Reports, 2014, 15, 792-800.	4.5	119
59	cGMP-Dependent Protein Kinase Contributes to Hydrogen Sulfide-Stimulated Vasorelaxation. PLoS ONE, 2012, 7, e53319.	2.5	116
60	Signaling pathways for the vascular effects of hydrogen sulfide. Current Opinion in Nephrology and Hypertension, 2011, 20, 107-112.	2.0	113
61	Hydrogen Sulfide and the Pathogenesis of Atherosclerosis. Antioxidants and Redox Signaling, 2014, 20, 805-817.	5.4	113
62	Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis. Circulation Research, 2015, 117, 364-375.	4.5	113
63	Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R669-R680.	1.8	104
64	The endogenous production of hydrogen sulphide in intrauterine tissues. Reproductive Biology and Endocrinology, 2009, 7, 10.	3.3	101
65	Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrology Dialysis Transplantation, 2011, 26, 2119-2126.	0.7	100
66	Integrated Stress Response Modulates Cellular Redox State via Induction of Cystathionine Î ³ -Lyase. Journal of Biological Chemistry, 2012, 287, 7603-7614.	3.4	100
67	Selective Regulation of Blood Pressure by Heme Oxygenase-1 in Hypertension. Hypertension, 2002, 40, 315-321.	2.7	96
68	SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells. Antioxidants and Redox Signaling, 2016, 24, 329-343.	5.4	94
69	Carbon monoxide and hypertension. Journal of Hypertension, 2004, 22, 1057-1074.	0.5	92
70	Hydrogen sulfide and asthma. Experimental Physiology, 2011, 96, 847-852.	2.0	85
71	The Inhibitory Role of Hydrogen Sulfide in Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma. American Journal of Pathology, 2013, 182, 1188-1195.	3.8	84
72	Cystathionine γ-Lyase Deficiency Protects Mice from Galactosamine/Lipopolysaccharide-Induced Acute Liver Failure. Antioxidants and Redox Signaling, 2014, 20, 204-216.	5.4	81

#	Article	IF	CITATIONS
73	Induction of heme oxygenase-1 and stimulation of cGMP production by hemin in aortic tissues from hypertensive rats. Blood, 2003, 101, 3893-3900.	1.4	80
74	Butyrate-stimulated H ₂ S Production in Colon Cancer Cells. Antioxidants and Redox Signaling, 2010, 12, 1101-1109.	5.4	80
75	Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutrition Research, 2008, 28, 464-471.	2.9	78
76	A critical life-supporting role for cystathionine γ-lyase in the absence of dietary cysteine supply. Free Radical Biology and Medicine, 2011, 50, 1280-1287.	2.9	77
77	Shared signaling pathways among gasotransmitters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8801-8802.	7.1	77
78	Specificity Protein-1 as a Critical Regulator of Human Cystathionine Î ³ -Lyase in Smooth Muscle Cells. Journal of Biological Chemistry, 2011, 286, 26450-26460.	3.4	76
79	Increased neointimal formation in cystathionine gamma-lyase deficient mice: Role of hydrogen sulfide in α5β1-integrin and matrix metalloproteinase-2 expression in smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2012, 52, 677-688.	1.9	71
80	Hydrogen Sulfide Impairs Glucose Utilization and Increases Gluconeogenesis in Hepatocytes. Endocrinology, 2013, 154, 114-126.	2.8	71
81	Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production. Cell Metabolism, 2017, 25, 1320-1333.e5.	16.2	71
82	Hydrogen Sulfide and Endothelial Dysfunction: Relationship with Nitric Oxide. Current Medicinal Chemistry, 2014, 21, 3646-3661.	2.4	71
83	Endogenous Kv channels in human embryonic kidney (HEK-293) cells. Molecular and Cellular Biochemistry, 2002, 238, 69-79.	3.1	70
84	Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	4.0	70
85	Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes. Biochemical and Biophysical Research Communications, 2006, 347, 872-881.	2.1	69
86	The Pathogenic Role of Cystathionine γ-Lyase/Hydrogen Sulfide in Streptozotocin-Induced Diabetes in Mice. American Journal of Pathology, 2011, 179, 869-879.	3.8	69
87	H2S Inhibits Hyperglycemia-Induced Intrarenal Renin-Angiotensin System Activation via Attenuation of Reactive Oxygen Species Generation. PLoS ONE, 2013, 8, e74366.	2.5	68
88	Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. International Journal of Cardiology, 2016, 220, 681-692.	1.7	68
89	H2S and Blood Vessels: An Overview. Handbook of Experimental Pharmacology, 2015, 230, 85-110.	1.8	67
90	Sustained Normalization of High Blood Pressure in Spontaneously Hypertensive Rats by Implanted Hemin Pump. Hypertension, 2006, 48, 685-692.	2.7	66

#	Article	IF	CITATIONS
91	Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BK channels. Cardiovascular Research, 2005, 65, 751-761.	3.8	64
92	Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. Journal of Molecular and Cellular Cardiology, 2018, 116, 29-40.	1.9	64
93	Enhanced Synthesis and Diminished Degradation of Hydrogen Sulfide in Experimental Colitis: A Site-Specific, Pro-Resolution Mechanism. PLoS ONE, 2013, 8, e71962.	2.5	61
94	MicroRNAâ€21 represses human cystathionine gammaâ€lyase expression by targeting at specificity proteinâ€1 in smooth muscle cells. Journal of Cellular Physiology, 2012, 227, 3192-3200.	4.1	60
95	Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovascular Research, 2011, 92, 494-503.	3.8	59
96	Hydrogen Sulfide Regulates Krüppel‣ike Factor 5 Transcription Activity via Specificity Protein 1 Sâ€Sulfhydration at Cys664 to Prevent Myocardial Hypertrophy. Journal of the American Heart Association, 2016, 5, .	3.7	59
97	Contributions of Kv1.2, Kv1.5 and Kv2.1 subunits to the native delayed rectifier K+ current in rat mesenteric artery smooth muscle cells. Life Sciences, 2002, 71, 1465-1473.	4.3	57
98	Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis. Biochemical and Biophysical Research Communications, 2006, 350, 942-948.	2.1	56
99	The message in the air: Hydrogen sulfide metabolism in chronic respiratory diseases. Respiratory Physiology and Neurobiology, 2012, 184, 130-138.	1.6	56
100	H2S during circulatory shock: Some unresolved questions. Nitric Oxide - Biology and Chemistry, 2014, 41, 48-61.	2.7	56
101	Decreased Gluconeogenesis in the Absence of Cystathionine Gamma-Lyase and the Underlying Mechanisms. Antioxidants and Redox Signaling, 2016, 24, 129-140.	5.4	56
102	Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia, 2013, 56, 533-541.	6.3	55
103	Hydrogen sulfide dysregulates the immune response by suppressing central carbon metabolism to promote tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6663-6674.	7.1	55
104	Cystathionine Î ³ -lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovascular Research, 2015, 107, 590-600.	3.8	54
105	The effects of parathyroid hormone on L-type voltage-dependent calcium channel currents in vascular smooth muscle cells and ventricular myocytes are mediated by a cyclic AMP dependent mechanism. FEBS Letters, 1991, 282, 331-334.	2.8	52
106	Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxiaâ€inducible factorâ€1α. FASEB Journal, 2015, 29, 1591-1602.	0.5	52
107	Dietary approaches to positively influence fetal determinants of adult health. FASEB Journal, 2006, 20, 371-373.	0.5	51
108	Hydrogen sulfide inhibits the translational expression of hypoxiaâ€inducible factorâ€1α. British Journal of Pharmacology, 2012, 167, 1492-1505.	5.4	51

#	Article	IF	CITATIONS
109	Mediation of exogenous hydrogen sulfide in recovery of ischemic post-conditioning-induced cardioprotection via down-regulating oxidative stress and up-regulating PI3K/Akt/GSK-3β pathway in isolated aging rat hearts. Cell and Bioscience, 2015, 5, 11.	4.8	51
110	Beneficial and deleterious effects of rosiglitazone on hypertension development in spontaneously hypertensive rats. American Journal of Hypertension, 2004, 17, 749-756.	2.0	50
111	Role of dopamine D2 receptors in ischemia/reperfusion induced apoptosis of cultured neonatal rat cardiomyocytes. Journal of Biomedical Science, 2011, 18, 18.	7.0	50
112	Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 165-176.	2.4	50
113	Bach1 Induces Endothelial Cell Apoptosis and Cell-Cycle Arrest through ROS Generation. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	4.0	49
114	Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide. European Journal of Pharmacology, 2007, 562, 236-246.	3.5	48
115	Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide - Biology and Chemistry, 2016, 58, 67-76.	2.7	46
116	H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal KATP channel. Biochemical and Biophysical Research Communications, 2014, 446, 393-398.	2.1	43
117	Modification of Akt1 by methylglyoxal promotes the proliferation of vascular smooth muscle cells. FASEB Journal, 2011, 25, 1746-1757.	0.5	42
118	The interaction of estrogen and CSE/H ₂ S pathway in the development of atherosclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H406-H414.	3.2	42
119	Microvascular Endothelial Dysfunction in Obesity Is Driven by Macrophage-Dependent Hydrogen Sulfide Depletion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 889-899.	2.4	42
120	Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes. Cell and Bioscience, 2016, 6, 26.	4.8	41
121	Activation of calcineurin expression in ischemia-reperfused rat heart and in human ischemic myocardium. Journal of Cellular Biochemistry, 2003, 90, 987-997.	2.6	40
122	Novel cardiac protective effects of urea: from shark to rat. British Journal of Pharmacology, 1999, 128, 1477-1484.	5.4	39
123	Hydrogen Sulfide As a Potential Target in Preventing Spermatogenic Failure and Testicular Dysfunction. Antioxidants and Redox Signaling, 2018, 28, 1447-1462.	5.4	39
124	H2S protects lipopolysaccharide-induced inflammation by blocking NFήB transactivation in endothelial cells. Toxicology and Applied Pharmacology, 2018, 338, 20-29.	2.8	39
125	Metabolic changes of H2S in smokers and patients of COPD which might involve in inflammation, oxidative stress and steroid sensitivity. Scientific Reports, 2015, 5, 14971.	3.3	38
126	Role of cGMP in hydrogen sulfide signaling. Nitric Oxide - Biology and Chemistry, 2015, 46, 7-13.	2.7	38

#	Article	IF	CITATIONS
127	Molecular basis of ATP-sensitive K+ channels in rat vascular smooth muscles. Biochemical and Biophysical Research Communications, 2002, 296, 463-469.	2.1	37
128	Increased expression of calcium-sensing receptors in atherosclerosis confers hypersensitivity to acute myocardial infarction in rats. Molecular and Cellular Biochemistry, 2012, 366, 345-354.	3.1	37
129	Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes. Cell and Bioscience, 2015, 5, 43.	4.8	37
130	The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells. Biochemical Pharmacology, 2018, 149, 143-152.	4.4	37
131	Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation. Journal of Biomedical Science, 2010, 17, 50.	7.0	36
132	Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Developmental Biology, 2017, 421, 271-283.	2.0	36
133	Altered Expression of BK Channel \hat{l}^21 Subunit in Vascular Tissues from Spontaneously Hypertensive Rats. American Journal of Hypertension, 2006, 19, 678-685.	2.0	35
134	Decrease in calcium-sensing receptor in the progress of diabetic cardiomyopathy. Diabetes Research and Clinical Practice, 2012, 95, 378-385.	2.8	35
135	The Calcium-Sensing Receptor Mediates Hypoxia-Induced Proliferation of Rat Pulmonary Artery Smooth Muscle Cells Through MEK1/ERK1,2 and PI3K Pathways. Basic and Clinical Pharmacology and Toxicology, 2011, 108, 185-193.	2.5	34
136	Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Molecular and Cellular Biochemistry, 2012, 371, 187-198.	3.1	34
137	Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries. Molecular and Cellular Biochemistry, 2014, 396, 87-98.	3.1	34
138	Altered profile of gene expression in rat hearts induced by chronic nicotine consumption. Biochemical and Biophysical Research Communications, 2002, 297, 729-736.	2.1	33
139	Calciumâ€sensing receptors induce apoptosis in cultured neonatal rat ventricular cardiomyocytes during simulated ischemia/reperfusion. Cell Biology International, 2008, 32, 792-800.	3.0	33
140	Rat pancreatic level of cystathionine γ-lyase is regulated by glucose level via specificity protein 1 (SP1) phosphorylation. Diabetologia, 2011, 54, 2615-2625.	6.3	33
141	Role of Calcium Channels in the Protective Effect of Hydrogen Sulfide in Rat Cardiomyoblasts. Cellular Physiology and Biochemistry, 2014, 33, 1205-1214.	1.6	33
142	Effects of nicotine on K+ channel currents in vascular smooth muscle cells from rat tail arteries. European Journal of Pharmacology, 1999, 364, 247-254.	3.5	32
143	Selective expression of Kir6.1 protein in different vascular and non-vascular tissues. Biochemical Pharmacology, 2004, 67, 147-156.	4.4	32
144	Is H ₂ S a Stinky Remedy for Atherosclerosis?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 156-157.	2.4	32

#	Article	IF	CITATIONS
145	Deficiency of cystathionine gamma-lyase and hepatic cholesterol accumulation during mouse fatty liver development. Science Bulletin, 2015, 60, 336-347.	9.0	32
146	Streptozotocin-induced diabetes impairs C-protein linked signal transduction in vascular smooth muscle. Molecular and Cellular Biochemistry, 2002, 240, 57-65.	3.1	31
147	Complex Expression and Localization of Inactivating Kv Channels in Cultured Hippocampal Astrocytes. Journal of Neurophysiology, 2005, 93, 1699-1709.	1.8	31
148	The novel H ₂ S donor 4â€carboxyâ€phenyl isothiocyanate inhibits mast cell degranulation and renin release by decreasing intracellular calcium. British Journal of Pharmacology, 2016, 173, 3222-3234.	5.4	31
149	Golgi Stress Response, Hydrogen Sulfide Metabolism, and Intracellular Calcium Homeostasis. Antioxidants and Redox Signaling, 2020, 32, 583-601.	5.4	31
150	Dietary restriction transforms the mammalian protein persulfidome in a tissue-specific and cystathionine Î ³ -lyase-dependent manner. Nature Communications, 2021, 12, 1745.	12.8	31
151	Cardiovascular effects of Buthus martensii (Karsch) scorpion venom. Toxicon, 1994, 32, 191-200.	1.6	30
152	Inhibition of vascular smooth muscle cell proliferation by chronic hemin treatment. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H999-H1007.	3.2	30
153	Increased expression of calciumâ€sensing receptors induced by ox‣DL amplifies apoptosis of cardiomyocytes during simulated ischaemia–reperfusion. Clinical and Experimental Pharmacology and Physiology, 2010, 37, e128-35.	1.9	30
154	Interaction of Hydrogen Sulfide and Estrogen on the Proliferation of Vascular Smooth Muscle Cells. PLoS ONE, 2012, 7, e41614.	2.5	30
155	Modulation of Cardiac and Aortic Peroxisome Proliferator-Activated Receptor-Î ³ Expression by Oxidative Stress in Chronically Glucose-Fed Rats. American Journal of Hypertension, 2006, 19, 407-412.	2.0	29
156	Nerve sprouting suppresses myocardial Ito and IK1 channels and increases severity to ventricular fibrillation in rat. Autonomic Neuroscience: Basic and Clinical, 2008, 144, 22-29.	2.8	29
157	Interaction of Selective Amino Acid Residues of K _{Ca} Channels with Carbon Monoxide. Experimental Biology and Medicine, 2003, 228, 474-480.	2.4	28
158	Calcium‣ensing Receptors Induce Apoptosis in Rat Cardiomyocytes via the Endo(sarco)plasmic Reticulum Pathway during Hypoxia/Reoxygenation. Basic and Clinical Pharmacology and Toxicology, 2010, 106, 396-405.	2.5	28
159	Cardiovascular disease and resuscitated septic shock lead to the downregulation of the H2S-producing enzyme cystathionine-γ-lyase in the porcine coronary artery. Intensive Care Medicine Experimental, 2017, 5, 17.	1.9	28
160	Molecular basis of voltage-dependent delayed rectifier K+ channels in smooth muscle cells from rat tail artery. Life Sciences, 2000, 66, 2023-2033.	4.3	27
161	Altered Vascular Reactivity and KATP Channel Currents in Vascular Smooth Muscle Cells from Deoxycorticosterone Acetate (DOCA)-Salt Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2004, 44, 525-531.	1.9	26
162	Toxic Gas, Lifesaver. Scientific American, 2010, 302, 66-71.	1.0	26

#	Article	IF	CITATIONS
163	Involvement of calcium-sensing receptor in oxLDL-induced MMP-2 production in vascular smooth muscle cells via PI3K/Akt pathway. Molecular and Cellular Biochemistry, 2012, 362, 115-122.	3.1	26
164	Mediation of dopamine D2 receptors activation in post-conditioning-attenuated cardiomyocyte apoptosis. Experimental Cell Research, 2014, 323, 118-130.	2.6	26
165	Interaction of H _{2} S with Calcium Permeable Channels and Transporters. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-7.	4.0	26
166	An Anticancer Role of Hydrogen Sulfide in Human Gastric Cancer Cells. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-8.	4.0	26
167	Cystathionine gamma-lyase/H2S system suppresses hepatic acetyl-CoA accumulation and nonalcoholic fatty liver disease in mice. Life Sciences, 2020, 252, 117661.	4.3	26
168	Haeme oxygenaseâ€1 and cardiac anaphylaxis. British Journal of Pharmacology, 2001, 134, 1689-1696.	5.4	25
169	Alterations in Heme Oxygenase/Carbon Monoxide System in Pulmonary Arteries in Hypertension. Experimental Biology and Medicine, 2003, 228, 557-563.	2.4	25
170	Calcium sensing receptor protects high glucose-induced energy metabolism disorder via blocking gp78-ubiquitin proteasome pathway. Cell Death and Disease, 2017, 8, e2799-e2799.	6.3	25
171	Modulation of K+Channel Currents by Serum Amineoxidase in Neurons. Biochemical and Biophysical Research Communications, 1996, 220, 47-52.	2.1	24
172	The functional expression of extracellular calcium-sensing receptor in rat pulmonary artery smooth muscle cells. Journal of Biomedical Science, 2011, 18, 16.	7.0	24
173	Role of cystathionine-γ-lyase in hypoxia-induced changes in TASK activity, intracellular [Ca 2+] and ventilation in mice. Respiratory Physiology and Neurobiology, 2017, 246, 98-106.	1.6	23
174	3-Mercaptopyruvate Sulfurtransferase, Not Cystathionine β-Synthase Nor Cystathionine γ-Lyase, Mediates Hypoxia-Induced Migration of Vascular Endothelial Cells. Frontiers in Pharmacology, 2017, 8, 657.	3.5	23
175	The changes in contractile status of single vascular smooth muscle cells and ventricular cells induced by bPTH-(1–34). Life Sciences, 1993, 52, 793-801.	4.3	22
176	Enhanced inhibition by melatonin of α-adrenoceptor- induced aortic contraction and inositol phosphate production in vascular smooth muscle cells from spontaneously hypertensive rats. Journal of Hypertension, 1998, 16, 339-347.	0.5	22
177	Differential expression of KV and KCa channels in vascular smooth muscle cells during 1-day culture. Pflugers Archiv European Journal of Physiology, 2001, 442, 124-135.	2.8	22
178	Using Carbon Nanotubes to Absorb Low-Concentration Hydrogen Sulfide in Fluid. IEEE Transactions on Nanobioscience, 2006, 5, 204-209.	3.3	22
179	Cadmium toxicity is alleviated by AtLCD and AtDCD inEscherichia coli. Journal of Applied Microbiology, 2012, 113, 1130-1138.	3.1	22
180	Post-conditioning protects rat cardiomyocytes via PKCε-mediated calcium-sensing receptors. Biochemical and Biophysical Research Communications, 2007, 361, 659-664.	2.1	21

#	Article	IF	CITATIONS
181	The functional expression of calcium-sensing receptor in the differentiated THP-1 cells. Molecular and Cellular Biochemistry, 2010, 342, 233-240.	3.1	21
182	Calciumâ€sensing receptors induce apoptosis during simulated ischaemia–reperfusion in Buffalo rat liver cells. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 605-612.	1.9	21
183	Contractile effect of ghrelin on isolated guinea-pig renal arteries. Vascular Pharmacology, 2007, 47, 31-40.	2.1	20
184	Non-functionalized carbon nanotube binding with hemoglobin. Colloids and Surfaces B: Biointerfaces, 2008, 65, 146-149.	5.0	20
185	Aldolase B Knockdown Prevents High Glucose-Induced Methylglyoxal Overproduction and Cellular Dysfunction in Endothelial Cells. PLoS ONE, 2012, 7, e41495.	2.5	19
186	Involvement of dopamine D2 receptors activation in ischemic post-conditioning-induced cardioprotection through promoting PKC-Îμ particulate translocation in isolated rat hearts. Molecular and Cellular Biochemistry, 2013, 379, 267-276.	3.1	19
187	Inhibitory effect of protopine on KATP channel subunits expressed in HEK-293 cells. European Journal of Pharmacology, 2004, 506, 93-100.	3.5	18
188	Increased Intracavernosal Pressure Response in Hypertensive Rats After Chronic Hemin Treatment. Journal of Sexual Medicine, 2006, 3, 619-627.	0.6	18
189	Modulation of methylglyoxal and glutathione by soybean isoflavones in mild streptozotocin-induced diabetic rats. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18, 618-623.	2.6	18
190	Inhibitory Effect of Hydrogen Sulfide on Platelet Aggregation and the Underlying Mechanisms. Journal of Cardiovascular Pharmacology, 2014, 64, 481-487.	1.9	18
191	Hydrogen Sulfide Induced Erythropoietin Synthesis is Regulated by HIF Proteins. Journal of Urology, 2016, 196, 251-260.	0.4	18
192	Age-Dependent Allergic Asthma Development and Cystathionine Gamma-Lyase Deficiency. Antioxidants and Redox Signaling, 2017, 27, 931-944.	5.4	18
193	The Effect of Hydroxylamine on KATP Channels in Vascular Smooth Muscle and Underlying Mechanisms. Molecular Pharmacology, 2005, 67, 1723-1731.	2.3	17
194	Is cystathionine gamma-lyase protein expressed in the heart?. Biochemical and Biophysical Research Communications, 2012, 428, 469-474.	2.1	17
195	Exogenous H2S restores ischemic post-conditioning-induced cardioprotection through inhibiting endoplasmic reticulum stress in the aged cardiomyocytes. Cell and Bioscience, 2017, 7, 67.	4.8	17
196	Efflux inhibition by H2S confers sensitivity to doxorubicin-induced cell death in liver cancer cells. Life Sciences, 2018, 213, 116-125.	4.3	17
197	Hyperosmolality-induced abnormal patterns of calcium mobilization in smooth muscle cells from non-diabetic and diabetic rats. Molecular and Cellular Biochemistry, 1998, 183, 79-85.	3.1	16
198	Increased HO-1 Expression and Decreased iNOS Expression in the Hippocampus From Adult Spontaneously Hypertensive Rats. Cell Biochemistry and Biophysics, 2006, 46, 35-42.	1.8	16

#	Article	IF	CITATIONS
199	Involvement of the ornithine decarboxylase/polyamine system in precondition-induced cardioprotection through an interaction with PKC in rat hearts. Molecular and Cellular Biochemistry, 2009, 332, 135-144.	3.1	16
200	Exogenous spermine inhibits the proliferation of human pulmonary artery smooth muscle cells caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways. International Journal of Molecular Medicine, 2016, 37, 39-46.	4.0	16
201	DOPAMINE D2 RECEPTOR STIMULATION INHIBITS ANGIOTENSIN IIâ€INDUCED HYPERTROPHY IN CULTURED NEONATAL RAT VENTRICULAR MYOCYTES. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 312-318.	1.9	15
202	Reversal of Sp1 transactivation and TGFβ1/SMAD1 signaling by H2S prevent nickel-induced fibroblast activation. Toxicology and Applied Pharmacology, 2018, 356, 25-35.	2.8	15
203	Two Types of Voltage-Dependent Cacium Channel Currents and Their Modulation by Parathyroid Hormone in Neonatal Rat Ventricular Cells. Journal of Cardiovascular Pharmacology, 1991, 17, 990-998.	1.9	14
204	Kinin B2 receptor-mediated contraction of tail arteries from normal or streptozotocin-induced diabetic rats. British Journal of Pharmacology, 1998, 125, 143-151.	5.4	14
205	The Role of Cystathionine-Î ³ -Lyase In Blunt Chest Trauma in Cigarette Smoke Exposed Mice. Shock, 2017, 47, 491-499.	2.1	14
206	ATP-sensitive K+ channels and mitochondrial permeability transition pore mediate effects of hydrogen sulfide on cytosolic Ca2+ homeostasis and insulin secretion in β-cells. Pflugers Archiv European Journal of Physiology, 2019, 471, 1551-1564.	2.8	14
207	Cystathionine-Î ³ -lyase (CSE) deficiency increases erythropoiesis and promotes mitochondrial electron transport via the upregulation of coproporphyrinogen III oxidase and consequent stimulation of heme biosynthesis. Biochemical Pharmacology, 2019, 169, 113604.	4.4	14
208	Three different vasoactive responses of rat tail artery to nicotine. Canadian Journal of Physiology and Pharmacology, 2000, 78, 20-28.	1.4	14
209	H(2)S and cellular proliferation and apoptosis. Acta Physiologica Sinica, 2007, 59, 133-40.	0.5	14
210	The functional expression of calcium-sensing receptors in BRL cells and related signal transduction pathway responsible for intracellular calcium elevation. Molecular and Cellular Biochemistry, 2010, 343, 13-19.	3.1	13
211	Altered circadian rhythm of cardiac \hat{l}^23 -adrenoceptor activity following myocardial infarction in the rat. Basic Research in Cardiology, 2011, 106, 37-50.	5.9	13
212	Endogenous H2S production deficiencies lead to impaired renal erythropoietin production. Canadian Urological Association Journal, 2018, 13, E210-E219.	0.6	13
213	Chemical sympathetic denervation, suppression of myocardial transient outward potassium current, and ventricular fibrillation in the rat. Canadian Journal of Physiology and Pharmacology, 2008, 86, 700-709.	1.4	12
214	Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry. Journal of Breath Research, 2014, 8, 036002.	3.0	12
215	Interaction among estrogen, IGF-1, and H2S on smooth muscle cell proliferation. Journal of Endocrinology, 2021, 248, 17-30.	2.6	12
216	Host cystathionine-Î ³ lyase derived hydrogen sulfide protects against Pseudomonas aeruginosa sepsis. PLoS Pathogens, 2021, 17, e1009473.	4.7	12

#	Article	IF	CITATIONS
217	The Role of Carbon Monoxide as a Gasotransmitter in Cardiovascular and Metabolic Regulation. , 2012, , 37-70.		12
218	Histamine-evoked Ca2+ oscillations in HeLa cells are sensitive to methylxanthines but insensitive to ryanodine. Pflugers Archiv European Journal of Physiology, 1994, 426, 129-138.	2.8	11
219	Extracellular Ca2+-sensing receptor expression and hormonal regulation in rat uterus during the peri-implantation period. Reproduction, 2005, 129, 779-788.	2.6	11
220	Measurement of low concentration and nano-quantity hydrogen sulfide in aqueous solution: measurement mechanisms and limitations. Measurement Science and Technology, 2007, 18, 1315-1320.	2.6	11
221	Upâ€regulation of aldolase <scp>A</scp> and methylglyoxal production in adipocytes. British Journal of Pharmacology, 2013, 168, 1639-1646.	5.4	11
222	Signaling Integration of Hydrogen Sulfide and Iron on Cellular Functions. Antioxidants and Redox Signaling, 2022, 36, 275-293.	5.4	11
223	Mediation of the Effect of Nicotine on Kir6.1 Channels by Superoxide Anion Production. Journal of Cardiovascular Pharmacology, 2005, 45, 447-455.	1.9	10
224	Impact of hyperglycemia on cystathionine-Î ³ -lyase expression during resuscitated murine septic shock. Intensive Care Medicine Experimental, 2017, 5, 30.	1.9	10
225	Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling. Clinical Science, 2017, 131, 309-325.	4.3	10
226	H ₂ S-stimulated bioenergetics in chicken erythrocytes and the underlying mechanism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R69-R78.	1.8	10
227	Cystathionine gammaâ€lyase/H 2 S signaling facilitates myogenesis under aging and injury condition. FASEB Journal, 2021, 35, e21511.	0.5	10
228	Enhanced vasocontraction of rat tail arteries by toxoflavin. British Journal of Pharmacology, 1996, 117, 293-298.	5.4	9
229	Altered expression and localization ofN-myristoyltransferase in experimentally induced rat model of ischemia-reperfusion. Journal of Cellular Biochemistry, 2002, 86, 509-519.	2.6	9
230	Sulphonylureas induced vasorelaxation of mouse arteries. European Journal of Pharmacology, 2007, 577, 124-128.	3.5	9
231	Measurement of low concentration and nano-quantity hydrogen sulfide in sera using unfunctionalized carbon nanotubes. Measurement Science and Technology, 2009, 20, 105801.	2.6	9
232	The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants, 2020, 9, 748.	5.1	9
233	Temperature dependence of L-type calcium channel currents in isolated smooth muscle cells from the rat tail artery. Journal of Thermal Biology, 1991, 16, 83-87.	2.5	8
234	Effects of Buthus martensii Karsch scorpion venom on the release of noradrenaline from in vitro and in vivo rat preparations. Canadian Journal of Physiology and Pharmacology, 1994, 72, 855-861.	1.4	8

#	Article	IF	CITATIONS
235	Hydrogen Sulfide Regulates the [Ca ²⁺] _i Level in the Primary Medullary Neurons. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	4.0	8
236	Altered calcium homeostasis in tail artery endothelial cells from spontaneously hypertensive rats*. American Journal of Hypertension, 1995, 8, 1023-1030.	2.0	7
237	The vasorelaxant effect of deuterium oxide is secondary to calcium-induced liberation of nitric oxide by endothelial cells. Journal of Hypertension, 1993, 11, 1021-1030.	0.5	6
238	Calmodulin-dependent cyclic nucleotide phosphodiesterase in an experimental rat model of cardiac ischemia–reperfusion. Canadian Journal of Physiology and Pharmacology, 2002, 80, 59-66.	1.4	6
239	Novel therapeutic strategies for impaired endothelium-dependent vascular relaxation. Expert Opinion on Therapeutic Patents, 2002, 12, 1237-1247.	5.0	6
240	The expression of calcium-sensing receptor in mouse embryonic stem cells (mESCs) and its influence on differentiation of mESC into cardiomyocytes. Differentiation, 2013, 85, 32-40.	1.9	6
241	Overview of Gasotransmitters and the Related Signaling Network. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 1-28.	0.8	6
242	Calyculin A and Outward K+ Channel Currents in Rat Tail Artery Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2002, 40, 660-668.	1.9	5
243	Response to Letter Regarding Article, "Dysregulation of Hydrogen Sulfide (H 2 S) Producing Enzyme Cystathionine γ-lyase (CSE) Contributes to Maternal Hypertension and Placental Abnormalities in Preeclampsia― Circulation, 2014, 129, e517-8.	1.6	5
244	Transduction of interleukin-10 through renal artery attenuates vascular neointimal proliferation and infiltration of immune cells in rat renal allograft. Immunology Letters, 2016, 176, 105-113.	2.5	4
245	Effect of hydrogen sulfide on glycolysisâ€based energy production in mouse erythrocytes. Journal of Cellular Physiology, 2022, 237, 763-773.	4.1	4
246	Identification of a Novel Bacterial K+ Channel. Journal of Membrane Biology, 2011, 242, 153-164.	2.1	3
247	Toward new instruments for measurement of low concentration hydrogen sulfide in small-quantity aqueous solutions. Measurement Science and Technology, 2008, 19, 115602.	2.6	2
248	Potential Health Risk of Arsenic in Groundwater near Tongyu County, Western of Jilin Province: A Case Study for Health Risk Assessment Based on Triangular Fuzzy Number. Advanced Materials Research, 2012, 518-523, 982-986.	0.3	2
249	A Comparison of Moisture Removing Strategies for Breath Samples Spiked with Trace Concentrations of Hydrogen Sulphide. Current Analytical Chemistry, 2013, 9, 312-318.	1.2	2
250	Production and Signaling Functions of Ammonia in Mammalian Cells. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 101-144.	0.8	2
251	Effects of three fragments of parathyroid hormone on calcium channel currents in neonatal rat ventricular cells. Regulatory Peptides, 1994, 54, 445-456.	1.9	1
252	Involvement of calcium sensing receptor in myocardial ischemia/reperfusion injury and apoptosis*. Journal of Molecular and Cellular Cardiology, 2007, 42, S80-S81.	1.9	1

#	Article	IF	CITATIONS
253	Alterations in G-Protein-Linked Signal Transduction in Vascular Smooth Muscle in Diabetes. Advances in Experimental Medicine and Biology, 2001, 498, 263-271.	1.6	1
254	Interaction of acetylcholine with Kir6.1 channels heterologously expressed in human embryonic kidney cells. European Journal of Pharmacology, 2005, 515, 34-42.	3.5	0
255	Erratum to "Calcium-sensing receptor induces apoptosis in cultured neonatal rat ventricular cardiomyocytes during simulated ischemia/reperfusion―[Cell Biol Int 32 (2008) 792-800]. Cell Biology International, 2009, 33, 254-254.	3.0	Ο
256	Follow-through after breakthrough. Expert Review of Clinical Pharmacology, 2011, 4, 1-3.	3.1	0
257	Cystathionine Gamma-Iyase (CSE) Deficiency Increases Oxidative Stress and Exacerbates Cardiac Mitochondrial Dysfunction and Myocardial Reperfusion Injury. Free Radical Biology and Medicine, 2011, 51, S43.	2.9	0
258	S7-1 Vascular sulfide metabolism during ischemia. Nitric Oxide - Biology and Chemistry, 2014, 39, S8-S9.	2.7	0