
George-Lucian Moldovan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9012270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The TIP60-ATM axis regulates replication fork stability in BRCA-deficient cells. Oncogenesis, 2022, 11, .	2.1	3
2	The emerging determinants of replication fork stability. Nucleic Acids Research, 2021, 49, 7224-7238.	6.5	35
3	PARP14 regulates cyclin D1 expression to promote cell-cycle progression. Oncogene, 2021, 40, 4872-4883.	2.6	23
4	CRISPR screens guide the way for PARP and ATR inhibitor biomarker discovery. FEBS Journal, 2021, , .	2.2	5
5	Loss of MED12 activates the TGFÎ ² pathway to promote chemoresistance and replication fork stability in BRCA-deficient cells. Nucleic Acids Research, 2021, 49, 12855-12869.	6.5	10
6	WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells. Nature Communications, 2021, 12, 6561.	5.8	20
7	Identification of regulators of poly-ADP-ribose polymerase inhibitor response through complementary CRISPR knockout and activation screens. Nature Communications, 2020, 11, 6118.	5.8	39
8	FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links. Nucleic Acids Research, 2020, 48, 9161-9180.	6.5	7
9	Ubiquitinated-PCNA protects replication forks from DNA2-mediated degradation by regulating Okazaki fragment maturation and chromatin assembly. Nature Communications, 2020, 11, 2147.	5.8	71
10	Genome-wide CRISPR synthetic lethality screen identifies a role for the ADP-ribosyltransferase PARP14 in DNA replication dynamics controlled by ATR. Nucleic Acids Research, 2020, 48, 7252-7264.	6.5	15
11	Dual genome-wide CRISPR knockout and CRISPR activation screens identifyÂmechanisms that regulate the resistance to multiple ATR inhibitors. PLoS Genetics, 2020, 16, e1009176.	1.5	17
12	Title is missing!. , 2020, 16, e1009176.		0
13	Title is missing!. , 2020, 16, e1009176.		Ο
14	Title is missing!. , 2020, 16, e1009176.		0
15	Title is missing!. , 2020, 16, e1009176.		Ο
16	Title is missing!. , 2020, 16, e1009176.		0
17	Title is missing!. , 2020, 16, e1009176.		Ο
18	Activation of Wnt signaling promotes olaparib resistant ovarian cancer. Molecular Carcinogenesis, 2019, 58, 1770-1782.	1.3	68

#	Article	IF	CITATIONS
19	PARI (PARPBP) suppresses replication stress-induced myeloid differentiation in leukemia cells. Oncogene, 2019, 38, 5530-5540.	2.6	13
20	Heterozygous RNF13 Gain-of-Function Variants Are Associated with Congenital Microcephaly, Epileptic Encephalopathy, Blindness, and Failure to Thrive. American Journal of Human Genetics, 2019, 104, 179-185.	2.6	10
21	Mechanisms of DNA Damage Tolerance: Post-Translational Regulation of PCNA. Genes, 2019, 10, 10.	1.0	69
22	NFκB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Oncogene, 2018, 37, 3647-3656.	2.6	28
23	DNA Polymerase Eta Prevents Tumor Cell-Cycle Arrest and Cell Death during Recovery from Replication Stress. Cancer Research, 2018, 78, 6549-6560.	0.4	28
24	Loss of E2F7 confers resistance to poly-ADP-ribose polymerase (PARP) inhibitors in BRCA2-deficient cells. Nucleic Acids Research, 2018, 46, 8898-8907.	6.5	51
25	PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress. Nucleic Acids Research, 2018, 46, 8908-8916.	6.5	59
26	Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Molecular Cell, 2017, 65, 380-392.	4.5	256
27	Heterozygous De Novo UBTF Gain-of-Function Variant Is Associated with Neurodegeneration in Childhood. American Journal of Human Genetics, 2017, 101, 267-273.	2.6	41
28	ERKing Trypanosoma: PCNA phosphorylation as novel target. Cell Cycle, 2016, 15, 3167-3168.	1.3	1
29	<scp>HUWE</scp> 1 interacts with <scp>PCNA</scp> to alleviate replication stress. EMBO Reports, 2016, 17, 874-886.	2.0	52
30	The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair. Cell Cycle, 2016, 15, 2636-2646.	1.3	23
31	PARP10 deficiency manifests by severe developmental delay and DNA repair defect. Neurogenetics, 2016, 17, 227-232.	0.7	17
32	Human DNA Polymerase μ Catalyzes Correct and Incorrect DNA Synthesis with High Catalytic Efficiency. Journal of Biological Chemistry, 2015, 290, 16292-16303.	1.6	8
33	A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress. Nucleic Acids Research, 2015, 43, 3143-3153.	6.5	48
34	The ADP-ribosyltransferase PARP10/ARTD10 Interacts with Proliferating Cell Nuclear Antigen (PCNA) and Is Required for DNA Damage Tolerance. Journal of Biological Chemistry, 2014, 289, 13627-13637.	1.6	85
35	PARI Overexpression Promotes Genomic Instability and Pancreatic Tumorigenesis. Cancer Research, 2013, 73, 2529-2539.	0.4	41
36	Inhibition of Homologous Recombination by the PCNA-Interacting Protein PARI. Molecular Cell, 2012, 45, 75-86.	4.5	196

#	Article	lF	CITATIONS
37	To the Rescue: The Fanconi Anemia Genome Stability Pathway Salvages Replication Forks. Cancer Cell, 2012, 22, 5-6.	7.7	18
38	DNA Damage Discrimination at Stalled Replication Forks by the Rad5 Homologs HLTF and SHPRH. Molecular Cell, 2011, 42, 141-143.	4.5	9
39	DNA Polymerase POLN Participates in Cross-Link Repair and Homologous Recombination. Molecular and Cellular Biology, 2010, 30, 1088-1096.	1.1	92
40	FANCD2 Hurdles the DNA Interstrand Crosslink. Cell, 2009, 139, 1222-1224.	13.5	26
41	How the Fanconi Anemia Pathway Guards the Genome. Annual Review of Genetics, 2009, 43, 223-249.	3.2	537
42	PCNA, the Maestro of the Replication Fork. Cell, 2007, 129, 665-679.	13.5	1,520
43	PCNA Controls Establishment of Sister Chromatid Cohesion during S Phase. Molecular Cell, 2006, 23, 723-732.	4.5	253
44	A Role for PCNA Ubiquitination in Immunoglobulin Hypermutation. PLoS Biology, 2006, 4, e366.	2.6	140
45	RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature, 2002, 419, 135-141.	13.7	1,957