
Len W Seymour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9012243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet, The, 2014, 383, 1129-1137.	6.3	689
2	In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nature Biotechnology, 2015, 33, 1201-1210.	9.4	362
3	Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nature Biotechnology, 2020, 38, 320-332.	9.4	210
4	Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood, 2009, 113, 1909-1918.	0.6	183
5	Directed Evolution Generates a Novel Oncolytic Virus for the Treatment of Colon Cancer. PLoS ONE, 2008, 3, e2409.	1.1	158
6	Adenovirus Type 5 Interactions with Human Blood Cells May Compromise Systemic Delivery. Molecular Therapy, 2006, 14, 118-128.	3.7	138
7	An Oncolytic Virus Expressing a T-cell Engager Simultaneously Targets Cancer and Immunosuppressive Stromal Cells. Cancer Research, 2018, 78, 6852-6865.	0.4	123
8	Use of Tissue-Specific MicroRNA to Control Pathology of Wild-Type Adenovirus without Attenuation of Its Ability to Kill Cancer Cells. PLoS Pathogens, 2009, 5, e1000440.	2.1	115
9	Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. , 2017, 5, 71.		113
10	Promises and challenges of adoptive T-cell therapies for solid tumours. British Journal of Cancer, 2021, 124, 1759-1776.	2.9	113
11	Cavitation-Enhanced Extravasation for Drug Delivery. Ultrasound in Medicine and Biology, 2011, 37, 1838-1852.	0.7	106
12	Oncolytic adenovirus expressing bispecific antibody targets Tâ€cell cytotoxicity in cancer biopsies. EMBO Molecular Medicine, 2017, 9, 1067-1087.	3.3	104
13	Ultrasound-enhanced drug delivery for cancer. Expert Opinion on Drug Delivery, 2012, 9, 1525-1538.	2.4	100
14	Enhanced Tumor Uptake and Penetration of Virotherapy Using Polymer Stealthing and Focused Ultrasound. Journal of the National Cancer Institute, 2013, 105, 1701-1710.	3.0	98
15	Oncolytic viruses: finally delivering. British Journal of Cancer, 2016, 114, 357-361.	2.9	95
16	Virotherapy of Ovarian Cancer With Polymer-cloaked Adenovirus Retargeted to the Epidermal Growth Factor Receptor. Molecular Therapy, 2008, 16, 244-251.	3.7	81
17	HPMA copolymers for masking and retargeting of therapeutic virusesâ~†. Advanced Drug Delivery Reviews, 2010, 62, 240-245.	6.6	78
18	Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. Journal of Controlled Release, 2012, 157, 235-242.	4.8	75

LEN W SEYMOUR

#	Article	IF	CITATIONS
19	Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery. Physics in Medicine and Biology, 2014, 59, 4861-4877.	1.6	75
20	Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes. Journal of Controlled Release, 2014, 178, 101-107.	4.8	73
21	Deregulation of HLA-I in cancer and its central importance for immunotherapy. , 2021, 9, e002899.		73
22	Interfaces between cellular responses to DNA damage and cancer immunotherapy. Genes and Development, 2021, 35, 602-618.	2.7	61
23	Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. , 2019, 7, 320.		58
24	Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound. Journal of Controlled Release, 2013, 169, 40-47.	4.8	56
25	Solid Tumor Immunotherapy with T Cell Engagerâ€Armed Oncolytic Viruses. Macromolecular Bioscience, 2018, 18, 1700187.	2.1	56
26	Retargeting polymerâ€coated adenovirus to the FGF receptor allows productive infection and mediates efficacy in a peritoneal model of human ovarian cancer. Journal of Gene Medicine, 2008, 10, 280-289.	1.4	52
27	Coating of adenovirus type 5 with polymers containing quaternary amines prevents binding to blood components. Journal of Controlled Release, 2009, 135, 152-158.	4.8	52
28	Tumour necrosis factor-alpha increases extravasation of virus particles into tumour tissue by activating the Rho A/Rho kinase pathway. Journal of Controlled Release, 2011, 156, 381-389.	4.8	49
29	Passive tumour targeting of polymer-coated adenovirus for cancer gene therapy. Journal of Drug Targeting, 2007, 15, 546-551.	2.1	45
30	Thermoresponsive Polymer Nanoparticles Co-deliver RSV F Trimers with a TLR-7/8 Adjuvant. Bioconjugate Chemistry, 2016, 27, 2372-2385.	1.8	44
31	Preclinical Safety Studies of Enadenotucirev, a Chimeric Group B Human-Specific Oncolytic Adenovirus. Molecular Therapy - Oncolytics, 2017, 5, 62-74.	2.0	40
32	Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators. Molecular Therapy - Oncolytics, 2017, 4, 18-30.	2.0	37
33	Oncolytic herpesvirus expressing PD-L1 BiTE for cancer therapy: exploiting tumor immune suppression as an opportunity for targeted immunotherapy. , 2021, 9, e001292.		34
34	Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Molecular Therapy, 2021, 29, 1668-1682.	3.7	33
35	Combining Oncolytic Adenovirus with Radiation—A Paradigm for the Future of Radiosensitization. Frontiers in Oncology, 2017, 7, 153.	1.3	32
36	Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction. Biomacromolecules, 2019, 20, 854-870.	2.6	32

LEN W SEYMOUR

#	Article	IF	CITATIONS
37	Targeting adenovirus gene delivery to activated tumour-associated vasculature via endothelial selectins. Journal of Controlled Release, 2011, 150, 196-203.	4.8	29
38	Actin-resistant DNAse I Expression From Oncolytic Adenovirus Enadenotucirev Enhances Its Intratumoral Spread and Reduces Tumor Growth. Molecular Therapy, 2016, 24, 796-804.	3.7	29
39	Antagonism of Glycolysis and Reductive Carboxylation of Glutamine Potentiates Activity of Oncolytic Adenoviruses in Cancer Cells. Cancer Research, 2019, 79, 331-345.	0.4	27
40	Tropism ablation and stealthing of oncolytic adenovirus enhances systemic delivery to tumors and improves virotherapy of cancer. Nanomedicine, 2012, 7, 1683-1695.	1.7	23
41	Optogenetic control of iPS cellâ€derived neurons in 2D and 3D culture systems using channelrhodopsinâ€2 expression driven by the synapsinâ€1 and calciumâ€calmodulin kinase II promoters. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 369-384.	1.3	22
42	OvAd1, a Novel, Potent, and Selective Chimeric Oncolytic Virus Developed for Ovarian Cancer by 3D-Directed Evolution. Molecular Therapy - Oncolytics, 2017, 4, 55-66.	2.0	17
43	Polyvalent Diazonium Polymers Provide Efficient Protection of Oncolytic Adenovirus Enadenotucirev from Neutralizing Antibodies while Maintaining Biological Activity <i>In Vitro</i> and <i>In Vivo</i> . Bioconjugate Chemistry, 2019, 30, 1244-1257.	1.8	17
44	Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference. Cancer Gene Therapy, 2019, 26, 59-73.	2.2	17
45	Active Adenoviral Vascular Penetration by Targeted Formation of Heterocellular Endothelial–epithelial Syncytia. Molecular Therapy, 2011, 19, 67-75.	3.7	16
46	Group B adenovirus enadenotucirev infects polarised colorectal cancer cells efficiently from the basolateral surface expected to be encountered during intravenous delivery to treat disseminated cancer. Virology, 2017, 505, 162-171.	1.1	16
47	Expression of human CD46 and trans-complementation by murine adenovirus 1 fails to allow productive infection by a group B oncolytic adenovirusÂin murine cancer cells. , 2018, 6, 55.		16
48	A liposome-based cancer vaccine for a rapid and high-titre anti-ErbB-2 antibody response. European Journal of Pharmaceutical Sciences, 2020, 152, 105456.	1.9	16
49	Making Oncolytic Virotherapy a Clinical Reality: The European Contribution. Human Gene Therapy, 2017, 28, 1033-1046.	1.4	14
50	Virotherapy – cancer targeted pharmacology. Drug Discovery Today, 2012, 17, 215-220.	3.2	13
51	Self-attenuating adenovirus enables production of recombinant adeno-associated virus for high manufacturing yield without contamination. Nature Communications, 2022, 13, 1182.	5.8	13
52	Development of a novel mammalian display system for selection of antibodies against membrane proteins. Journal of Biological Chemistry, 2020, 295, 18436-18448.	1.6	12
53	Convergent Evolution by Cancer and Viruses in Evading the NKG2D Immune Response. Cancers, 2020, 12, 3827.	1.7	12
54	A Rapid-Response Humoral Vaccine Platform Exploiting Pre-Existing Non-Cognate Populations of Anti-Vaccine or Anti-Viral CD4+ T Helper Cells to Confirm B Cell Activation. PLoS ONE, 2016, 11, e0166383.	1.1	12

LEN W SEYMOUR

#	Article	IF	CITATIONS
55	External Beam Radiation Therapy and Enadenotucirev: Inhibition of the DDR and Mechanisms of Radiation-Mediated Virus Increase. Cancers, 2020, 12, 798.	1.7	11
56	Macrophages and their interactions with oncolytic viruses. Current Opinion in Pharmacology, 2015, 24, 23-29.	1.7	10
57	Targeting of Liposomes via PSGL1 for Enhanced Tumor Accumulation. Pharmaceutical Research, 2013, 30, 352-361.	1.7	9
58	Attenuation of the Hypoxia Inducible Factor Pathway after Oncolytic Adenovirus Infection Coincides with Decreased Vessel Perfusion. Cancers, 2020, 12, 851.	1.7	9
59	A PTENtial cause for the selectivity of oncolytic viruses?. Nature Immunology, 2016, 17, 225-226.	7.0	8
60	Evolutionarily conserved primary TNF sequences relate to its primitive functions in cell death induction. Journal of Cell Science, 2016, 129, 108-120.	1.2	8
61	Polymer stealthing and mucin-1 retargeting for enhanced pharmacokinetics of an oncolytic vaccinia virus. Molecular Therapy - Oncolytics, 2021, 21, 47-61.	2.0	8
62	Calcium Influx Caused by ER Stress Inducers Enhances Oncolytic Adenovirus Enadenotucirev Replication and Killing through PKCα Activation. Molecular Therapy - Oncolytics, 2019, 15, 117-130.	2.0	7
63	Adenovirus: Teaching an Old Dog New Tricks. Human Gene Therapy, 2011, 22, 1041-1042.	1.4	6
64	Improved <i>In Vitro</i> Human Tumor Models for Cancer Gene Therapy. Human Gene Therapy, 2015, 26, 249-256.	1.4	6
65	Tackling HLA Deficiencies Head on with Oncolytic Viruses. Cancers, 2021, 13, 719.	1.7	6
66	The role of cancer metabolism in defining the success of oncolytic viro-immunotherapy. Cytokine and Growth Factor Reviews, 2020, 56, 115-123.	3.2	5
67	Use of Liquid Patient Ascites Fluids as a Preclinical Model for Oncolytic Virus Activity. Methods in Molecular Biology, 2020, 2058, 261-270.	0.4	5
68	Under Pressure: Elevated Blood Pressure Enhances Targeting of Tumors by Oncolytic Viruses. Molecular Therapy, 2016, 24, 204-205.	3.7	4
69	Oncolytic Virotherapy: Combining First-Rate Science with an Unmet Clinical Need. Human Gene Therapy, 2011, 22, 387-388.	1.4	0
70	Optogenetically Engineered Neurons Differentiated from Human SH-SY5Y Cells Survived and Expressed ChR2 in 3D Hydrogel. Biomedicines, 2022, 10, 1534.	1.4	0