Alcineia C Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9012196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic conversion of glycerol to acrolein over modified molecular sieves: Activity and deactivation studies. Chemical Engineering Journal, 2011, 168, 765-774.	12.7	119
2	Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts. International Journal of Hydrogen Energy, 2012, 37, 3201-3212.	7.1	117
3	Highly stable dealuminated zeolite support for the production of hydrogen by dry reforming of methane. Applied Catalysis A: General, 2009, 355, 156-168.	4.3	94
4	Modified coconut shell fibers: A green and economical sorbent for the removal of anions from aqueous solutions. Chemical Engineering Journal, 2012, 185-186, 274-284.	12.7	91
5	Mesoporous MAl2O4 (M = Cu, Ni, Fe or Mg) spinels: Characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2. Applied Catalysis A: General, 2010, 382, 148-157.	4.3	74
6	Mesoporous catalysts for dry reforming of methane: Correlation between structure and deactivation behaviour of Ni-containing catalysts. International Journal of Hydrogen Energy, 2012, 37, 12281-12291.	7.1	60
7	Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane. Catalysis Communications, 2009, 11, 11-14.	3.3	59
8	Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the synthesis time and the role of structure on the catalytic performance. Chemical Engineering Journal, 2017, 313, 1454-1467.	12.7	54
9	Selective catalytic reduction of NOx by CO (CO-SCR) over metal-supported nanoparticles dispersed on porous alumina. Advanced Powder Technology, 2020, 31, 464-476.	4.1	52
10	Studies of catalytic activity and coke deactivation of spinel oxides during ethylbenzene dehydrogenation. Applied Catalysis A: General, 2009, 359, 165-179.	4.3	47
11	A study on the modification of mesoporous mixed oxides supports for dry reforming of methane by Pt or Ru. Applied Catalysis A: General, 2014, 473, 132-145.	4.3	46
12	Oxidative dehydrogenation of ethylbenzene with CO2 for styrene production over porous iron-based catalysts. Fuel, 2013, 108, 740-748.	6.4	45
13	Catalytic performance of MnFeSi composite in selective oxidation of styrene, ethylbenzene and benzyl alcohol. Molecular Catalysis, 2017, 436, 29-42.	2.0	43
14	Characterization and catalytic performances of copper and cobalt-exchanged hydroxyapatite in glycerol conversion for 1-hydroxyacetone production. Applied Catalysis A: General, 2014, 471, 39-49.	4.3	41
15	Ni–Fe and Co–Fe binary oxides derived from layered double hydroxides and their catalytic evaluation for hydrogen production. Catalysis Today, 2015, 250, 155-165.	4.4	38
16	Effect of the active metal on the catalytic activity of the titanate nanotubes for dry reforming of methane. Chemical Engineering Journal, 2016, 290, 438-453.	12.7	38
17	The role of Pt loading on La2O3-Al2O3 support for methane conversion reactions via partial oxidation and steam reforming. Fuel, 2019, 254, 115681.	6.4	35
18	Synthesis of lactic acid from glycerol using a Pd/C catalyst. Fuel Processing Technology, 2015, 138, 228-235.	7.2	33

Alcineia C Oliveira

#	Article	IF	CITATIONS
19	Dehydrogenation of ethylbenzene with CO2 to produce styrene over Fe-containing ceramic composites. Applied Catalysis A: General, 2010, 377, 55-63.	4.3	32
20	Metal cations intercalated titanate nanotubes as catalysts for α,β unsaturated esters production. Applied Catalysis A: General, 2013, 454, 74-80.	4.3	31
21	On the reasons for deactivation of titanate nanotubes with metals catalysts in the acetalization of glycerol with acetone. Chemical Engineering Journal, 2018, 334, 1927-1942.	12.7	31
22	Basic catalytic properties of as-synthesized molecular sieves. Microporous and Mesoporous Materials, 2009, 120, 206-213.	4.4	30
23	Activity of nanocasted oxides for gas-phase dehydration of glycerol. Chemical Engineering Journal, 2011, 168, 656-664.	12.7	30
24	Bio-additive fuels from glycerol acetalization over metals-containing vanadium oxide nanotubes (MeVOx-NT in which, Me = Ni, Co, or Pt). Fuel Processing Technology, 2019, 184, 45-56.	7.2	28
25	Nanosized aluminum derived oxides catalysts prepared with different methods for styrene production. Chemical Engineering Journal, 2012, 209, 345-355.	12.7	25
26	Studies on styrene selective oxidation over iron-based catalysts: Reaction parameters effects. Fuel, 2015, 150, 305-317.	6.4	25
27	Nanocasted oxides for gas phase glycerol conversion. Applied Catalysis A: General, 2011, 399, 50-62.	4.3	23
28	Metal oxides nanoparticles from complexes on SBA-15 for glycerol conversion. Chemical Engineering Journal, 2013, 228, 442-448.	12.7	23
29	Nanocasted oxides for oxidative dehydrogenation of ethylbenzene utilizing CO2 as soft oxidant. Journal of Molecular Catalysis A, 2011, 348, 1-13.	4.8	22
30	On the role of size controlled Pt particles in nanostructured Pt-containing Al2O3 catalysts for partial oxidation of methane. International Journal of Hydrogen Energy, 2019, 44, 27329-27342.	7.1	21
31	A comparative study on porous solid acid oxides as catalysts in the esterification of glycerol with acetic acid. Catalysis Today, 2020, 349, 57-67.	4.4	21
32	Comparative study of transformation of linear alkanes over modified mordenites and sulphated zirconia catalysts: Influence of the zeolite acidity on the performance of n-butane isomerization. Journal of Molecular Catalysis A, 2008, 293, 31-38.	4.8	20
33	High Catalytic Activity of Nitrogen-Containing Carbon from Molecular Sieves in Fine Chemistry. Catalysis Letters, 2009, 131, 135-145.	2.6	20
34	On the structural, textural and morphological features of Fe-based catalysts supported on polystyrene mesoporous carbon for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2015, 495, 72-83.	4.3	20
35	Ternary composites for glycerol conversion: The influence of structural and textural properties on catalytic activity. Applied Catalysis A: General, 2011, 406, 63-72.	4.3	19
36	Catalytic performance of kenyaite and magadiite lamellar silicates for the production of α,β-unsaturated esters. Chemical Engineering Journal, 2015, 263, 257-267.	12.7	19

Alcineia C Oliveira

#	Article	IF	CITATIONS
37	Nanosized Pt-containing Al2O3 as an efficient catalyst to avoid coking and sintering in steam reforming of glycerol. RSC Advances, 2014, 4, 61771-61780.	3.6	18
38	Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO. Fuel, 2020, 275, 117872.	6.4	18
39	Characterisation of high surface area nanocomposites for glycerol transformation: Effect of the presence of silica on the structure and catalytic activity. Catalysis Today, 2013, 212, 127-136.	4.4	17
40	Investigation of the deactivation of iron nanocomposites by coking in the dehydrogenation of ethylbenzene. Journal of Molecular Catalysis A, 2011, 351, 81-92.	4.8	16
41	Temperature and high pressure effects on the structural features of catalytic nanocomposites oxides by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 138, 763-773.	3.9	16
42	Effect of the calcination temperatures of the Fe-based catalysts supported on polystyrene mesoporous carbon for FTS Synthesis. Catalysis Today, 2017, 282, 174-184.	4.4	15
43	Synthesis, characterization and catalytic performance of metal-containing mesoporous carbons for styrene production. Applied Catalysis A: General, 2011, 395, 53-63.	4.3	13
44	Acid Red 66 Dye Removal from Aqueous Solution by Fe/C-based Composites: Adsorption, Kinetics and Thermodynamic Studies. Materials, 2020, 13, 1107.	2.9	13
45	Studies on MeAPSO-5: An investigation of physicochemical and acidic properties. Catalysis Today, 2008, 133-135, 56-62.	4.4	12
46	Structural, acidic and catalytic features of transition metal-containing molecular sieves in the transformation of C4 hydrocarbon. Applied Catalysis A: General, 2010, 382, 10-20.	4.3	12
47	Binary Oxides with Defined Hierarchy of Pores in the Esterification of Glycerol. Catalysts, 2016, 6, 151.	3.5	12
48	Fe-containing carbon obtained from ferrocene: Influence of the preparation procedure on the catalytic performance in FTS reaction. Chemical Engineering Journal, 2017, 317, 143-156.	12.7	12
49	Catalytic assessment of nanostructured Pt/xLa2O3-Al2O3 oxides for hydrogen production by dry reforming of methane: Effects of the lanthana content on the catalytic activity. Catalysis Today, 2020, 349, 141-149.	4.4	12
50	Modifications of an HY zeolite for n-octane hydroconversion. Applied Catalysis A: General, 2011, 403, 65-74.	4.3	11
51	Optimizing reaction conditions and experimental studies of selective catalytic reduction of NO by CO over supported SBA-15 catalyst. Environmental Science and Pollution Research, 2020, 27, 30649-30660.	5.3	11
52	Structural changes in nanostructured catalytic oxides monitored by Raman spectroscopy: Effect of the laser heating. Journal of Physics and Chemistry of Solids, 2017, 102, 90-98.	4.0	10
53	Characterizations of nanostructured nickel aluminates as catalysts for conversion of glycerol: Influence of the preparation methods. Advanced Powder Technology, 2017, 28, 131-138.	4.1	10
54	Effect of sulfatation on the physicochemical and catalytic properties of molecular sieves. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 487-500.	1.7	9

#	Article	IF	CITATIONS
55	CeFe-Based Bead Nanocomposites as Catalysts for Oxidation of Ethylbenzene Reaction. Catalysts, 2018, 8, 495.	3.5	9
56	Comparison of the catalytic performance of YIG garnets and Fe-containing oxides catalysts for oxidation of ethylbenzene. Ceramics International, 2021, 47, 6279-6289.	4.8	9
57	Catalytic activity of nitrogen-containing molecular sieves and nitrogen-containing carbon for α,β-unsaturated esters production. Chemical Engineering Journal, 2011, 172, 1054-1065.	12.7	8
58	Characterisation and catalytic properties of Ni, Co, Ce and Ru nanoparticles in mesoporous carbon spheres. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
59	Production of α,β-unsaturated esters via Knoevenagel condensation of buthyraldehyde and ethyl cyanoacetate over amine-containing carbon catalyst. Chemical Engineering Journal, 2015, 264, 565-569.	12.7	8
60	Selective Catalytic Reduction of NOx by CO over Doubly Promoted MeMo/Nb2O5 Catalysts (Me = Pt, Ni,) Tj ETQ	q0 <u>.0</u> 0 rgB	T /Overlock
61	Influence of the Metal Incorporation into Hydroxyapatites on the Deactivation Behavior of the Solids in the Esterification of Glycerol. Catalysts, 2022, 12, 10.	3.5	7
62	Raman studies of nanocomposites catalysts: temperature and pressure effects of CeAl, CeMn and NiAl oxides. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 160-167.	3.9	6
63	Synthesis of highly porous alumina-based oxides with tailored catalytic properties in the esterification of glycerol. Journal of Materials Research, 2018, 33, 3625-3633.	2.6	6
64	Structural transformation of vanadate nanotubes into vanadate oxides nanostructures during the dry reforming of methane. Molecular Catalysis, 2020, 480, 110641.	2.0	6
65	Effects of the Incorporation of Distinct Cations in Titanate Nanotubes on the Catalytic Activity in NOx Conversion. Materials, 2021, 14, 2181.	2.9	6
66	Porous ternary Fe-based catalysts for the oxidative dehydrogenation of ethylbenzene in the presence (absence) of carbon dioxide. RSC Advances, 2015, 5, 20900-20913.	3.6	5

67	Catalytic acetalization of glycerol to biofuel additives over NiO and Co3O4 supported oxide catalysts: experimental results and theoretical calculations. Molecular Catalysis, 2020, 496, 111186.	2.0	3
68	Laser-power dependence effects on the structural stability of nanocomposite catalysts studied by Raman spectroscopy: On the structure-activity correlations in glycerol acetylation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280, 121526.	3.9	1