
Peter Claus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9012182/publications.pdf Version: 2024-02-01

DETED CLAUS

#	Article	IF	CITATIONS
1	Protein Network Analysis Reveals a Functional Connectivity of Dysregulated Processes in ALS and SMA. Neuroscience Insights, 2022, 17, 263310552210877.	0.9	4
2	Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2007785118.	3.3	11
3	Fibroblast Growth Factor Signalling in the Diseased Nervous System. Molecular Neurobiology, 2021, 58, 3884-3902.	1.9	50
4	Profilin2 regulates actin rod assembly in neuronal cells. Scientific Reports, 2021, 11, 10287.	1.6	7
5	Microtubule-associated protein 1B dysregulates microtubule dynamics and neuronal mitochondrial transport in spinal muscular atrophy. Human Molecular Genetics, 2021, 29, 3935-3944.	1.4	13
6	IRE1-Mediated Unfolded Protein Response Promotes the Replication of Tick-Borne Flaviviruses in a Virus and Cell-Type Dependent Manner. Viruses, 2021, 13, 2164.	1.5	6
7	FOCAD loss impacts microtubule assembly, G2/M progression and patient survival in astrocytic gliomas. Acta Neuropathologica, 2020, 139, 175-192.	3.9	15
8	Resolution of pathogenic R-loops rescues motor neuron degeneration in spinal muscular atrophy. Brain, 2020, 143, 2-5.	3.7	11
9	The Proteome and Secretome of Cortical Brain Cells Infected With Herpes Simplex Virus. Frontiers in Neurology, 2020, 11, 844.	1.1	7
10	A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells, 2020, 9, 2405.	1.8	4
11	Renal pathology in a mouse model of severe Spinal Muscular Atrophy is associated with downregulation of Clial Cell-Line Derived Neurotrophic Factor (GDNF). Human Molecular Genetics, 2020, 29, 2365-2378.	1.4	13
12	Altered bone development with impaired cartilage formation precedes neuromuscular symptoms in spinal muscular atrophy. Human Molecular Genetics, 2020, 29, 2662-2673.	1.4	20
13	Profilin2aâ€phosphorylation as a regulatory mechanism for actin dynamics. FASEB Journal, 2020, 34, 2147-2160.	0.2	14
14	The Need for SMN-Independent Treatments of Spinal Muscular Atrophy (SMA) to Complement SMN-Enhancing Drugs. Frontiers in Neurology, 2020, 11, 45.	1.1	34
15	Muscle overexpression of Klf15 via an AAV8-Spc5-12 construct does not provide benefits in spinal muscular atrophy mice. Gene Therapy, 2020, 27, 505-515.	2.3	5
16	Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2019, 6, 1519-1532.	1.7	72
17	Vitamin D improves endothelial barrier integrity and counteracts inflammatory effects on endothelial progenitor cells. FASEB Journal, 2019, 33, 9142-9153.	0.2	27
18	CBMT-12. FOCAD LOSS IMPACTS MICROTUBULE ASSEMBLY, G2/M PROGRESSION AND PATIENT SURVIVAL IN ASTROCYTIC GLIOMAS. Neuro-Oncology, 2019, 21, vi35-vi35.	0.6	0

#	Article	IF	CITATIONS
19	HSV-1 triggers paracrine fibroblast growth factor response from cortical brain cells via immediate-early protein ICPO. Journal of Neuroinflammation, 2019, 16, 248.	3.1	16
20	Investigations of Microtubule-associated Protein 2 Gene Expression in Spinal Muscular Atrophy. Journal of Pediatric Research, 2019, 6, 148-154.	0.1	3
21	Intact interleukin-10 receptor signaling protects from hippocampal damage elicited by experimental neurotropic virus infection of SJL mice. Scientific Reports, 2018, 8, 6106.	1.6	13
22	The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration?. Neuroscientist, 2018, 24, 54-72.	2.6	78
23	Light modulation ameliorates expression of circadian genes and disease progression in spinal muscular atrophy mice. Human Molecular Genetics, 2018, 27, 3582-3597.	1.4	10
24	Nanodiamonds as "artificial proteins― Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials, 2018, 176, 106-121.	5.7	27
25	Gene expression profiles in neurological tissues during West Nile virus infection: a critical meta-analysis. BMC Genomics, 2018, 19, 530.	1.2	10
26	Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine, 2018, 31, 226-242.	2.7	37
27	Metalloprotease-mediated cleavage of PlexinD1 and its sequestration to actin rods in the motoneuron disease spinal muscular atrophy (SMA). Human Molecular Genetics, 2017, 26, 3946-3959.	1.4	17
28	ERK and ROCK functionally interact in a signaling network that is compensationally upregulated in Spinal Muscular Atrophy. Neurobiology of Disease, 2017, 108, 352-361.	2.1	19
29	Neuronal Dysfunction in iPSC-Derived Medium Spiny Neurons from Chorea-Acanthocytosis Patients Is Reversed by Src Kinase Inhibition and F-Actin Stabilization. Journal of Neuroscience, 2016, 36, 12027-12043.	1.7	40
30	Fibroblast growth factor 23 signaling in hippocampal cells: impact on neuronal morphology and synaptic density. Journal of Neurochemistry, 2016, 137, 756-769.	2.1	58
31	Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2. Neuroscience, 2016, 314, 134-144.	1.1	9
32	Coalition of Nuclear Receptors in the Nervous System. Journal of Cellular Physiology, 2015, 230, 2875-2880.	2.0	11
33	Chatting with the neighbors: crosstalk between Rho-kinase (ROCK) and other signaling pathways for treatment of neurological disorders. Frontiers in Neuroscience, 2015, 9, 198.	1.4	52
34	A nuclear odyssey: fibroblast growth factor-2 (FGF-2) as a regulator of nuclear homeostasis in the nervous system. Cellular and Molecular Life Sciences, 2015, 72, 1651-1662.	2.4	17
35	Nuclear basic fibroblast growth factor regulates triple-negative breast cancer chemo-resistance. Breast Cancer Research, 2015, 17, 91.	2.2	26
36	Bilateral crosstalk of rho- and extracellular-signal-regulated-kinase (ERK) pathways is confined to an unidirectional mode in spinal muscular atrophy (SMA). Cellular Signalling, 2014, 26, 540-548.	1.7	41

#	Article	IF	CITATIONS
37	Immobile survival of motoneuron (SMN) protein stored in Cajal bodies can be mobilized by protein interactions. Cellular and Molecular Life Sciences, 2013, 70, 2555-2568.	2.4	9
38	Sorting of the FGF receptor 1 in a human glioma cell line. Histochemistry and Cell Biology, 2013, 139, 135-148.	0.8	16
39	NGF-Induced Cell Differentiation and Gene Activation Is Mediated by Integrative Nuclear FGFR1 Signaling (INFS). PLoS ONE, 2013, 8, e68931.	1.1	22
40	Regulation of Neuronal Differentiation by Proteins Associated with Nuclear Bodies. PLoS ONE, 2013, 8, e82871.	1.1	6
41	Therapeutic Potential of Mesenchymal Stromal Cells and MSC Conditioned Medium in Amyotrophic Lateral Sclerosis (ALS) - In Vitro Evidence from Primary Motor Neuron Cultures, NSC-34 Cells, Astrocytes and Microglia. PLoS ONE, 2013, 8, e72926.	1.1	60
42	Distinct Functional Interactions between Actin Isoforms and Nonsarcomeric Myosins. PLoS ONE, 2013, 8, e70636.	1.1	74
43	Polysialyltransferase overexpression in Schwann cells mediates different effects during peripheral nerve regeneration. Glycobiology, 2012, 22, 107-115.	1.3	17
44	Cooperation of Nuclear Fibroblast Growth Factor Receptor 1 and Nurr1 Offers New Interactive Mechanism in Postmitotic Development of Mesencephalic Dopaminergic Neurons. Journal of Biological Chemistry, 2012, 287, 19827-19840.	1.6	44
45	Analysis of the Fibroblast Growth Factor System Reveals Alterations in a Mouse Model of Spinal Muscular Atrophy. PLoS ONE, 2012, 7, e31202.	1.1	29
46	A novel nuclear FGF Receptorâ€1 partnership with retinoid and Nur receptors during developmental gene programming of embryonic stem cells. Journal of Cellular Biochemistry, 2012, 113, 2920-2936.	1.2	28
47	PPP4R2 regulates neuronal cell differentiation and survival, functionally cooperating with SMN. European Journal of Cell Biology, 2012, 91, 662-674.	1.6	19
48	Axonopathy Is Associated with Complex Axonal Transport Defects in a Model of Multiple Sclerosis. Brain Pathology, 2012, 22, 454-471.	2.1	35
49	Complement upregulation and activation on motor neurons and neuromuscular junction in the SOD1 C93A mouse model of familial amyotrophic lateral sclerosis. Journal of Neuroimmunology, 2011, 235, 104-109.	1.1	53
50	The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin. Human Molecular Genetics, 2011, 20, 4865-4878.	1.4	120
51	Characterization and differentiation potential of rat ventral mesencephalic neuronal progenitor cells immortalized with SV40 large T antigen. Cell and Tissue Research, 2010, 340, 29-43.	1.5	10
52	Mice lacking basic fibroblast growth factor showed faster sensory recovery. Experimental Neurology, 2010, 223, 166-172.	2.0	16
53	Fibroblast growth factor 2 (FGF-2) is a novel substrate for arginine methylation by PRMT5. Biological Chemistry, 2009, 390, 59-65.	1.2	20
54	Fibroblast growth factor–2 regulates the stability of nuclear bodies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12747-12752.	3.3	24

#	Article	IF	CITATIONS
55	Fibroblast Growth Factor Receptor-1 (FGFR1) Nuclear Dynamics Reveal a Novel Mechanism in Transcription Control. Molecular Biology of the Cell, 2009, 20, 2401-2412.	0.9	65
56	Upâ€regulation of plateletâ€derived growth factor by peripheralâ€blood leukocytes during experimental allergic encephalomyelitis. Journal of Neuroscience Research, 2008, 86, 392-402.	1.3	23
57	Expression and regulation of Sef, a novel signaling inhibitor of receptor tyrosine kinases-mediated signaling in the nervous system. Acta Histochemica, 2008, 110, 155-162.	0.9	12
58	Local Production of Secretory IgA in the Eye-Associated Lymphoid Tissue (EALT) of the Normal Human Ocular Surface. , 2008, 49, 2322.		49
59	The spinal muscular atrophy gene product regulates neurite outgrowth: importance of the C terminus. FASEB Journal, 2007, 21, 1492-1502.	0.2	58
60	Chromatin compaction and cell death by high molecular weight FGF-2 depend on its nuclear localization, intracrine ERK activation, and engagement of mitochondria. Journal of Cellular Physiology, 2007, 213, 690-698.	2.0	29
61	In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. Journal of Neurochemistry, 2006, 98, 193-202.	2.1	140
62	Valproic Acid Promotes Neurite Outgrowth in PC12 Cells independent from Regulation of the Survival of Motoneuron Protein. Chemical Biology and Drug Design, 2006, 67, 244-247.	1.5	45
63	FGF-1 and FGF-2 Require the Cytosolic Chaperone Hsp90 for Translocation into the Cytosol and the Cell Nucleus. Journal of Biological Chemistry, 2006, 281, 11405-11412.	1.6	42
64	Rat embryonic motoneurons in long-term co-culture with Schwann cells—a system to investigate motoneuron diseases on a cellular level in vitro. Journal of Neuroscience Methods, 2005, 142, 275-284.	1.3	57
65	Nuclear fibroblast growth factor-2 interacts specifically with splicing factor SF3a66. Biological Chemistry, 2004, 385, 1203-1208.	1.2	18
66	Expression of basic fibroblast growth factor isoforms in postmitotic sympathetic neurons: synthesis, intracellular localization and involvement in karyokinesis. Neuroscience, 2004, 124, 561-572.	1.1	22
67	Fibroblast growth factor-20 promotes the differentiation of Nurr1-overexpressing neural stem cells into tyrosine hydroxylase-positive neurons. Neurobiology of Disease, 2004, 17, 163-170.	2.1	44
68	Expression of the fibroblast growth factor-2 isoforms and the FGF receptor 1–4 transcripts in the rat model system of Parkinson's disease. Neuroscience Letters, 2004, 360, 117-120.	1.0	33
69	Targeted disruption of the FGF-2 gene affects the response to peripheral nerve injury. Molecular and Cellular Neurosciences, 2004, 25, 444-452.	1.0	41
70	Fibroblast growth factor-223 binds directly to the survival of motoneuron protein and is associated with small nuclear RNAs. Biochemical Journal, 2004, 384, 559-565.	1.7	26
71	Differential Intranuclear Localization of Fibroblast Growth Factor-2 Isoforms and Specific Interaction with the Survival of Motoneuron Protein. Journal of Biological Chemistry, 2003, 278, 479-485.	1.6	97
72	A novel linker histone-like protein is associated with cytoplasmic filaments in <i>Caenorhabditis elegans</i> . Journal of Cell Science, 2002, 115, 2881-2891.	1.2	14

#	Article	IF	CITATIONS
73	In vitro expression and regulation of ciliary neurotrophic factor and its $\hat{I}\pm$ receptor subunit in neonatal rat olfactory ensheathing cells. Neuroscience Letters, 2001, 306, 165-168.	1.0	65
74	Molecular cloning and developmental expression of rat fibroblast growth factor receptorÂ3. Histochemistry and Cell Biology, 2001, 115, 147-155.	0.8	24
75	In vivo expression and localization of the fibroblast growth factor system in the intact and lesioned rat peripheral nerve and spinal ganglia. Journal of Comparative Neurology, 2001, 434, 342-357.	0.9	90
76	Distinctive Effects of Rat Fibroblast Growth Factor-2 Isoforms on PC12 and Schwann Cells. Growth Factors, 2001, 19, 175-191.	0.5	27
77	Conformational Changes of DNA Induced by Binding ofChironomus High Mobility Group Protein 1a (cHMG1a). Journal of Biological Chemistry, 1997, 272, 19763-19770.	1.6	61
78	Structural and Functional Consequences of Mutations within the Hydrophobic Cores of the HMG1-Box Domain of the Chironomus High-Mobility-Group Protein 1a. FEBS Journal, 1997, 243, 151-159.	0.2	20
79	High mobility group proteins cHMG 1a, cHMG 1b, and cHMGI are distinctly distributed in chromosomes and differentially expressed during ecdysone dependent cell differentiation. Chromosoma, 1997, 105, 369-379.	1.0	33
80	High mobility group proteins cHMG1a, cHMG1b, and cHMGI are distinctly distributed in chromosomes and differentially expressed during ecdysone dependent cell differentiation. Chromosoma, 1997, 105, 369-379.	1.0	3