## Steven M Wise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9011842/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity, 2010, 23, R1-R91.                                                                               | 0.6 | 464       |
| 2  | Three-dimensional multispecies nonlinear tumor growth—I. Journal of Theoretical Biology, 2008, 253, 524-543.                                                                             | 0.8 | 381       |
| 3  | An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation. SIAM<br>Journal on Numerical Analysis, 2009, 47, 2269-2288.                               | 1.1 | 332       |
| 4  | Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich–Schwoebel Type Energy:<br>Application to Thin Film Epitaxy. SIAM Journal on Numerical Analysis, 2012, 50, 105-125. | 1.1 | 266       |
| 5  | Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. Journal of Computational Physics, 2009, 228, 5323-5339.                         | 1.9 | 238       |
| 6  | An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal<br>Equation. SIAM Journal on Numerical Analysis, 2011, 49, 945-969.                        | 1.1 | 228       |
| 7  | Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. Journal of Mathematical Biology, 2009, 58, 723-763.                                           | 0.8 | 224       |
| 8  | Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bulletin of Mathematical Biology, 2005, 67, 211-259.    | 0.9 | 213       |
| 9  | Computer simulation of glioma growth and morphology. NeuroImage, 2007, 37, S59-S70.                                                                                                      | 2.1 | 212       |
| 10 | Three-dimensional multispecies nonlinear tumor growth—ll: Tumor invasion and angiogenesis. Journal<br>of Theoretical Biology, 2010, 264, 1254-1278.                                      | 0.8 | 194       |
| 11 | Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear<br>multigrid method. Journal of Computational Physics, 2007, 226, 414-446.                 | 1.9 | 162       |
| 12 | A new phase-field model for strongly anisotropic systems. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2009, 465, 1337-1359.                  | 1.0 | 154       |
| 13 | Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the<br>Cahn-Hilliard-Hele-Shaw System of Equations. Journal of Scientific Computing, 2010, 44, 38-68.        | 1.1 | 151       |
| 14 | Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation. SIAM Journal on Numerical Analysis, 2013, 51, 2851-2873.                   | 1.1 | 129       |
| 15 | Unconditionally stable schemes for equations of thin film epitaxy. Discrete and Continuous<br>Dynamical Systems, 2010, 28, 405-423.                                                      | 0.5 | 128       |
| 16 | Multiparameter Computational Modeling of Tumor Invasion. Cancer Research, 2009, 69, 4493-4501.                                                                                           | 0.4 | 124       |
| 17 | A Second-Order Energy Stable BDF Numerical Scheme for the Cahn-Hilliard Equation. Communications in Computational Physics, 2018, 23, .                                                   | 0.7 | 124       |
| 18 | Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations. Journal of Computational Physics, 2014, 277, 48-71.                                  | 1.9 | 117       |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Convergence analysis and error estimates for a second order accurate finite element method for the<br>Cahn–Hilliard–Navier–Stokes system. Numerische Mathematik, 2017, 137, 495-534.                                                                            | 0.9 | 114       |
| 20 | An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. Journal of<br>Computational and Applied Mathematics, 2019, 362, 574-595.                                                                                                 | 1.1 | 112       |
| 21 | A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection. Journal of Scientific Computing, 2012, 52, 546-562.                                                                                                                                | 1.1 | 111       |
| 22 | Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. Journal of Computational Physics, 2013, 250, 270-292.                                                                                  | 1.9 | 110       |
| 23 | Stability and convergence of a second-order mixed finite element method for the Cahn–Hilliard equation. IMA Journal of Numerical Analysis, 2016, 36, 1867-1897.                                                                                                 | 1.5 | 108       |
| 24 | An \$H^2\$ convergence of a second-order convex-splitting, finite difference scheme for the<br>three-dimensional Cahn–Hilliard equation. Communications in Mathematical Sciences, 2016, 14, 489-515.                                                            | 0.5 | 107       |
| 25 | A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn–Hilliard Equation and Its<br>Solution by the Homogeneous Linear Iteration Method. Journal of Scientific Computing, 2016, 69,<br>1083-1114.                                             | 1.1 | 91        |
| 26 | Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation. Mathematics of Computation, 2015, 85, 2231-2257.                                                                                                    | 1.1 | 89        |
| 27 | An adaptive multigrid algorithm for simulating solid tumor growth using mixture models.<br>Mathematical and Computer Modelling, 2011, 53, 1-20.                                                                                                                 | 2.0 | 88        |
| 28 | Analysis of a DarcyCahnHilliard Diffuse Interface Model for the Hele-Shaw Flow and Its Fully<br>Discrete Finite Element Approximation. SIAM Journal on Numerical Analysis, 2012, 50, 1320-1343.                                                                 | 1.1 | 86        |
| 29 | Analysis of a Mixed Finite Element Method for a CahnHilliardDarcyStokes System. SIAM Journal on<br>Numerical Analysis, 2015, 53, 127-152.                                                                                                                       | 1.1 | 84        |
| 30 | A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation. Numerische<br>Mathematik, 2014, 128, 377-406.                                                                                                                            | 0.9 | 83        |
| 31 | Quantum dot formation on a strain-patterned epitaxial thin film. Applied Physics Letters, 2005, 87, 133102.                                                                                                                                                     | 1.5 | 75        |
| 32 | Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numerische<br>Mathematik, 2017, 135, 679-709.                                                                                                                             | 0.9 | 74        |
| 33 | A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without<br>Slope Selection. Journal of Scientific Computing, 2014, 59, 574-601.                                                                                      | 1.1 | 67        |
| 34 | Mass conservative and energy stable finite difference methods for the quasi-incompressible<br>Navier–Stokes–Cahn–Hilliard system: Primitive variable and projection-type schemes. Computer<br>Methods in Applied Mechanics and Engineering, 2017, 326, 144-174. | 3.4 | 66        |
| 35 | An Energy Stable BDF2 Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field Crystal Equation. Communications in Computational Physics, 2019, 26, 1335-1364.                                                                                       | 0.7 | 66        |
| 36 | An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System. Communications in Computational Physics, 2013, 13, 929-957.                                                                                                                           | 0.7 | 61        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Efficient phase-field simulation of quantum dot formation in a strained heteroepitaxial film.<br>Superlattices and Microstructures, 2004, 36, 293-304.                                                                | 1.4 | 54        |
| 38 | A secondâ€order energy stable backward differentiation formula method for the epitaxial thin film<br>equation with slope selection. Numerical Methods for Partial Differential Equations, 2018, 34,<br>1975-2007.     | 2.0 | 50        |
| 39 | Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. Journal of Computational Physics, 2017, 334, 45-67.                                                        | 1.9 | 45        |
| 40 | Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation. Computers and Mathematics With Applications, 2018, 75, 1912-1928.        | 1.4 | 43        |
| 41 | Algorithm 801: POLSYS_PLP. ACM Transactions on Mathematical Software, 2000, 26, 176-200.                                                                                                                              | 1.6 | 41        |
| 42 | Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source. IMA Journal of Numerical Analysis, 2015, 35, 1167-1198.                            | 1.5 | 41        |
| 43 | Modeling solvent evaporation during thin film formation in phase separating polymer mixtures. Soft<br>Matter, 2018, 14, 1833-1846.                                                                                    | 1.2 | 41        |
| 44 | Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. Journal of Computational Physics: X, 2019, 3, 100031.                                               | 1.1 | 37        |
| 45 | Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System. Journal of Scientific Computing, 2020, 84, 1.                                                                                                       | 1.1 | 37        |
| 46 | A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters. Journal of Computational Physics, 2021, 442, 110451.                                       | 1.9 | 37        |
| 47 | A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane.<br>International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 726-754.                                 | 1.0 | 36        |
| 48 | A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Mathematics of Computation, 2021, 90, 2071-2106.                                                         | 1.1 | 36        |
| 49 | Clobal Smooth Solutions of the Three-dimensional Modified Phase Field Crystal Equation. Methods and Applications of Analysis, 2010, 17, 191-212.                                                                      | 0.1 | 35        |
| 50 | A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete and Continuous Dynamical Systems - Series B, 2013, 18, 2211-2238. | 0.5 | 34        |
| 51 | A Uniquely Solvable, Energy Stable Numerical Scheme for the Functionalized Cahn–Hilliard Equation and Its Convergence Analysis. Journal of Scientific Computing, 2018, 76, 1938-1967.                                 | 1.1 | 31        |
| 52 | Efficient energy stable schemes for isotropic and strongly anisotropic Cahn–Hilliard systems with the Willmore regularization. Journal of Computational Physics, 2018, 365, 56-73.                                    | 1.9 | 28        |
| 53 | The Dynamics of HPV Infection and Cervical Cancer Cells. Bulletin of Mathematical Biology, 2016, 78, 4-20.                                                                                                            | 0.9 | 27        |
| 54 | Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn-Hilliard equation. Journal of Computational Physics, 2020, 423, 109772.   | 1.9 | 26        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An Energy Stable Finite Element Scheme for the Three-Component Cahn–Hilliard-Type Model for<br>Macromolecular Microsphere Composite Hydrogels. Journal of Scientific Computing, 2021, 87, 1.      | 1.1 | 26        |
| 56 | Surface-directed spinodal decomposition in a stressed, two-dimensional, thin film. Thin Solid Films, 2005, 473, 151-163.                                                                          | 0.8 | 24        |
| 57 | High Accuracy Benchmark Problems for Allen-Cahn and Cahn-Hilliard Dynamics. Communications in Computational Physics, 2019, 26, 947-972.                                                           | 0.7 | 24        |
| 58 | Numerical simulations of pattern-directed phase decomposition in a stressed, binary thin film. Journal of Applied Physics, 2003, 94, 889-898.                                                     | 1.1 | 22        |
| 59 | Structure-Preserving, Energy Stable Numerical Schemes for a Liquid Thin Film Coarsening Model. SIAM<br>Journal of Scientific Computing, 2021, 43, A1248-A1272.                                    | 1.3 | 20        |
| 60 | Phase decomposition of a binary thin film on a patterned substrate. Applied Physics Letters, 2002, 81, 919-921.                                                                                   | 1.5 | 19        |
| 61 | A diffuse domain method for two-phase flows with large density ratio in complex geometries. Journal of Fluid Mechanics, 2021, 907, .                                                              | 1.4 | 19        |
| 62 | A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids. Journal of Computational Physics, 2018, 352, 463-497. | 1.9 | 18        |
| 63 | A weakly nonlinear, energy stable scheme for the strongly anisotropic Cahn-Hilliard equation and its convergence analysis. Journal of Computational Physics, 2020, 405, 109109.                   | 1.9 | 18        |
| 64 | Phase-field modeling of epitaxial growth: Applications to step trains and island dynamics. Physica D:<br>Nonlinear Phenomena, 2012, 241, 77-94.                                                   | 1.3 | 17        |
| 65 | An improved error analysis for a second-order numerical scheme for the Cahn–Hilliard equation.<br>Journal of Computational and Applied Mathematics, 2021, 388, 113300.                            | 1.1 | 17        |
| 66 | Convergence Analysis of the Variational Operator Splitting Scheme for a Reaction-Diffusion System with Detailed Balance. SIAM Journal on Numerical Analysis, 2022, 60, 781-803.                   | 1.1 | 16        |
| 67 | Doubly degenerate diffuse interface models of surface diffusion. Mathematical Methods in the Applied Sciences, 2021, 44, 5385-5405.                                                               | 1.2 | 15        |
| 68 | An energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equations. Journal of Computational Physics, 2016, 321, 1026-1054.                                  | 1.9 | 14        |
| 69 | Nonlinear Modeling and Simulation of Tumor Growth. Modeling and Simulation in Science,<br>Engineering and Technology, 2008, , 1-69.                                                               | 0.4 | 10        |
| 70 | Convergence analysis of the Fast Subspace Descent method for convex optimization problems.<br>Mathematics of Computation, 2020, 89, 2249-2282.                                                    | 1.1 | 9         |
| 71 | A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 149-182.                                           | 0.5 | 9         |
| 72 | Doubly degenerate diffuse interface models of anisotropic surface diffusion. Mathematical Methods in the Applied Sciences, 2021, 44, 5406-5417.                                                   | 1.2 | 9         |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Discontinuous Galerkin derivative operators with applications to secondâ€order elliptic problems and stability. Mathematical Methods in the Applied Sciences, 2015, 38, 5160-5182.                                      | 1.2 | 7         |
| 74 | An iteration solver for the Poisson–Nernst–Planck system and its convergence analysis. Journal of<br>Computational and Applied Mathematics, 2022, 406, 114017.                                                          | 1.1 | 6         |
| 75 | Effect of interfacial segregation on phase decomposition of a thin film on a patterned substrate.<br>Metals and Materials International, 2003, 9, 1-8.                                                                  | 1.8 | 4         |
| 76 | Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete and<br>Continuous Dynamical Systems - Series B, 2016, 21, 1689-1711.                                                         | 0.5 | 4         |
| 77 | Simulations of Nonlinear Strongly Anisotropic, Misfitting Crystals and Thin Films. Materials Research<br>Society Symposia Proceedings, 2008, 1087, 20101.                                                               | 0.1 | 3         |
| 78 | Coarsening of elastically stressed, strongly anisotropic driven thin films. Physical Review E, 2012, 85, 061605.                                                                                                        | 0.8 | 3         |
| 79 | Preconditioned Accelerated Gradient Descent Methods for Locally Lipschitz Smooth Objectives with Applications to the Solution of Nonlinear PDEs. Journal of Scientific Computing, 2021, 89, 1.                          | 1.1 | 3         |
| 80 | Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 2211-2229.                                                    | 0.6 | 2         |
| 81 | Optimal rate convergence analysis of a numerical scheme for the ternary Cahn–Hilliard system with a<br>Flory–Huggins–deGennes energy potential. Journal of Computational and Applied Mathematics, 2022,<br>415, 114474. | 1.1 | 2         |
| 82 | Wetting transitions in a binary thin-film. Metals and Materials International, 2005, 11, 487-497.                                                                                                                       | 1.8 | 0         |
| 83 | LECTURE NOTES ON NONLINEAR TUMOR GROWTH: MODELING AND SIMULATION. Lecture Notes Series,<br>Institute for Mathematical Sciences, 2009, , 69-133.                                                                         | 0.2 | 0         |
| 84 | Publisher's Note: Coarsening of elastically stressed, strongly anisotropic driven thin films [Phys. Rev.<br>E85, 061605 (2012)]. Physical Review E, 2012, 86, .                                                         | 0.8 | 0         |