Zhigang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9011739/publications.pdf Version: 2024-02-01

<u>- 7нісляє Ц</u>

#	Article	IF	CITATIONS
1	Constitutive Expression of a <i>miR319</i> Gene Alters Plant Development and Enhances Salt and Drought Tolerance in Transgenic Creeping Bentgrass. Plant Physiology, 2013, 161, 1375-1391.	4.8	378
2	Heterologous expression of <i>Arabidopsis</i> H ⁺ â€pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (<i>Agrostis stolonifera</i> L.). Plant, Cell and Environment, 2010, 33, 272-289.	5.7	158
3	Constitutive Expression of Rice <i>MicroRNA528</i> Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass. Plant Physiology, 2015, 169, 576-593.	4.8	136
4	AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABAâ€dependent and independent signalling to attenuate plant response to abiotic stress. Plant, Cell and Environment, 2016, 39, 1320-1337.	5.7	82
5	Heterologous expression of Os <scp>SIZ</scp> 1, a rice <scp>SUMO E</scp> 3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass. Plant Biotechnology Journal, 2013, 11, 432-445.	8.3	79
6	Transgenic creeping bentgrass overexpressing <i>Osaâ€miR393a</i> exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnology Journal, 2019, 17, 233-251.	8.3	75
7	Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. Plant Biotechnology Journal, 2017, 15, 433-446.	8.3	66
8	MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Horticulture Research, 2019, 6, 48.	6.3	64
9	STRESS INDUCED FACTOR 2, a Leucine-Rich Repeat Kinase Regulates Basal Plant Pathogen Defense. Plant Physiology, 2018, 176, 3062-3080.	4.8	49
10	Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis. Scientific Reports, 2016, 6, 28791.	3.3	29
11	AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC Plant Biology, 2020, 20, 184.	3.6	27
12	Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). BMC Genomics, 2020, 21, 131.	2.8	26
13	MiR396 is involved in plant response to vernalization and flower development in Agrostis stolonifera. Horticulture Research, 2020, 7, 173.	6.3	21
14	Transcriptomic profiles of non-embryogenic and embryogenic callus cells in a highly regenerative upland cotton line (Gossypium hirsutum L.). BMC Developmental Biology, 2020, 20, 25.	2.1	19
15	Adventitious shoot regeneration from in vitro cultured leaf explants of peach rootstock Guardian® is significantly enhanced by silver thiosulfate. Plant Cell, Tissue and Organ Culture, 2015, 120, 757-765.	2.3	17
16	DRMY1, a Myb-Like Protein, Regulates Cell Expansion and Seed Production in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 285-302.	3.1	15
17	Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. Plants, 2021, 10, 1775.	3.5	10
18	Manipulating Expression of Tonoplast Transporters. , 2012, 913, 359-369.		0

#	Article	IF	CITATIONS
19	Biolistic DNA Delivery in Turfgrass Embryonic Callus Initiated from Mature Seeds. Methods in Molecular Biology, 2020, 2124, 251-261.	0.9	0