
Gabriella Pasqua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9011618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the Phytochemical Composition and Bioactivities of Anacyclus maroccanus Ball. and Anacyclus radiatus Loisel Aerial Parts: Preliminary Evidence for the Possible Development of Moroccan Plants. Molecules, 2022, 27, 692.	3.8	3
2	Effects of Organic Biostimulants Added with Zeolite on Zucchini Squash Plants Infected by Tomato Leaf Curl New Delhi Virus. Viruses, 2022, 14, 607.	3.3	3
3	A novel approach to control Botrytis cinerea fungal infections: uptake and biological activity of antifungals encapsulated in nanoparticle based vectors. Scientific Reports, 2022, 12, 7989.	3.3	15
4	Comparative transcriptomics and metabolomics in Vitis vinifera â€~Malvasia' and Vitis rupestris â€~Du Lot' cultured cells provide insights in possible innate resistance against pathogens. Plant Biosystems, 2021, 155, 557-566.	1.6	0
5	Comparison between In Vitro Chemical and Ex Vivo Biological Assays to Evaluate Antioxidant Capacity of Botanical Extracts. Antioxidants, 2021, 10, 1136.	5.1	11
6	Antifungal activity of Mongolian medicinal plant extracts. Natural Product Research, 2020, 34, 449-455.	1.8	21
7	Phytochemical and biological characterization of Italian "sedano bianco di Sperlonga―Protected Geographical Indication celery ecotype: A multimethodological approach. Food Chemistry, 2020, 309, 125649.	8.2	25
8	<i>In vitro</i> antimicrobial activity of plant extracts against <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> causal agent of bacterial canker in kiwifruit. Plant Biosystems, 2020, 154, 100-106.	1.6	10
9	Commercial Hemp Seed Oils: A Multimethodological Characterization. Applied Sciences (Switzerland), 2020, 10, 6933.	2.5	17
10	Antifungal Activity of Phenolic and Polyphenolic Compounds from Different Matrices of Vitis vinifera L. against Human Pathogens. Molecules, 2020, 25, 3748.	3.8	47
11	NMR-Based Metabolomic Study of Purple Carrot Optimal Harvest Time for Utilization as a Source of Bioactive Compounds. Applied Sciences (Switzerland), 2020, 10, 8493.	2.5	8
12	Correlation between the Antimicrobial Activity and Metabolic Profiles of Cell Free Supernatants and Membrane Vesicles Produced by Lactobacillus reuteri DSM 17938. Microorganisms, 2020, 8, 1653.	3.6	22
13	Chemico-Biological Characterization of Torpedino Di Fondi® Tomato Fruits: A Comparison with San Marzano Cultivar at Two Ripeness Stages. Antioxidants, 2020, 9, 1027.	5.1	12
14	Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Scientific Reports, 2020, 10, 1920.	3.3	104
15	Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy: An Untargeted Chemical Characterization from Early Flowering to Ripening. Molecules, 2020, 25, 1908.	3.8	38
16	Stilbene biosynthesis and gene expression in response to methyl jasmonate and continuous light treatment in <i>Vitis vinifera</i> cv. Malvasia del Lazio and <i>Vitis rupestris</i> Du Lot cell cultures. Physiologia Plantarum, 2019, 166, 646-662.	5.2	20
17	Anti-Candida Biofilm Activity of Pterostilbene or Crude Extract from Non-Fermented Grape Pomace Entrapped in Biopolymeric Nanoparticles. Molecules, 2019, 24, 2070.	3.8	26
18	Microfluidic synthesis of methyl jasmonate-loaded PLGA nanocarriers as a new strategy to improve natural defenses in Vitis vinifera. Scientific Reports, 2019, 9, 18322.	3.3	21

GABRIELLA PASQUA

#	Article	IF	CITATIONS
19	Phenolic content and in vitro antifungal activity of unripe grape extracts from agro-industrial wastes. Natural Product Research, 2019, 33, 803-807.	1.8	8
20	Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Natural Product Research, 2019, 33, 1106-1114.	1.8	17
21	A multi-methodological approach in the study of Italian PDO "Cornetto di Pontecorvo―red sweet pepper. Food Chemistry, 2018, 255, 120-131.	8.2	38
22	Capsicum annuum L. var. Cornetto di Pontecorvo PDO: Polyphenolic profile and in vitro biological activities. Journal of Functional Foods, 2018, 40, 679-691.	3.4	31
23	Exodermis and endodermis are the sites of xanthone biosynthesis in <i>Hypericum perforatum</i> roots. New Phytologist, 2018, 217, 1099-1112.	7.3	43
24	Plant Products with Antifungal Activity: From Field to Biotechnology Strategies. , 2018, , 35-71.		0
25	Chitosan oligosaccharides affect xanthone and VOC biosynthesis in Hypericum perforatum root cultures and enhance the antifungal activity of root extracts. Plant Cell Reports, 2018, 37, 1471-1484.	5.6	20
26	Phytochemical analysis and effects on ingestive behaviour of a Caralluma fimbriata extract. Food and Chemical Toxicology, 2017, 108, 63-73.	3.6	16
27	Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Reports, 2017, 36, 1917-1928.	5.6	84
28	Antiâ€Dermatophyte and Antiâ€ <i>Malassezia</i> Activity of Extracts Rich in Polymeric Flavanâ€3â€ols Obtained from <i>Vitis vinifera</i> Seeds. Phytotherapy Research, 2017, 31, 124-131.	5.8	20
29	Metabolic Profile and Root Development of Hypericum perforatum L. In vitro Roots under Stress Conditions Due to Chitosan Treatment and Culture Time. Frontiers in Plant Science, 2016, 7, 507.	3.6	17
30	Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Reports, 2016, 35, 1009-1020.	5.6	28
31	Ecophysiological and phytochemical response to ozone of wine grape cultivars of <i>Vitis vinifera</i> L. Natural Product Research, 2016, 30, 2514-2522.	1.8	19
32	Strategies for <i>ex situ</i> conservation of <i>Centaurea cineraria</i> subsp. <i>circae</i> (Asteraceae), an endemic plant from Lazio (Italy). Plant Biosystems, 2016, 150, 323-332.	1.6	7
33	<i>In vitro</i> antifungal activity of extracts obtained from <i>Hypericum perforatum</i> adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of <i>Malassezia furfur</i> . Natural Product Research, 2016, 30, 544-550.	1.8	39
34	Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Reports, 2015, 34, 1953-1962.	5.6	39
35	Evaluation of Anti- <i>Candida</i> Activity of <i>Vitis vinifera</i> L. Seed Extracts Obtained from Wine and Table Cultivars. BioMed Research International, 2014, 2014, 1-11.	1.9	32
36	Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	41

GABRIELLA PASQUA

#	Article	IF	CITATIONS
37	Antitumoural activity of viniferin-enriched extracts from <i>Vitis vinifera</i> L. cell cultures. Natural Product Research, 2014, 28, 2006-2016.	1.8	30
38	A non-targeted metabolomics approach to evaluate the effects of biomass growth and chitosan elicitation on primary and secondary metabolism of Hypericum perforatum in vitro roots. Metabolomics, 2014, 10, 1186-1196.	3.0	28
39	Trichomes in <i>Camptotheca acuminata</i> Decaisne (Nyssaceae): Morphology, distribution, structure, and secretion. Plant Biosystems, 2013, 147, 548-556.	1.6	9
40	Bioassay-guided fractionation of extracts from Hypericum perforatum inÂvitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiology and Biochemistry, 2013, 70, 342-347.	5.8	25
41	Chemical composition and antifungal activity of <i>Hypericum perforatum</i> subsp. <i>angustifolium</i> roots from wild plants and plants grown under controlled conditions. Plant Biosystems, 2013, 147, 557-562.	1.6	23
42	Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines. International Journal of Molecular Sciences, 2012, 13, 651-664.	4.1	76
43	Enhancement of Viniferin Production in Vitis vinifera L. cv. Alphonse Lavallée Cell Suspensions by Low-Energy Ultrasound Alone and in Combination with Methyl Jasmonate. Journal of Agricultural and Food Chemistry, 2012, 60, 11135-11142.	5.2	36
44	A three-step culture system to increase the xanthone production and antifungal activity of Hypericum perforatum subsp. angustifolium inÂvitro roots. Plant Physiology and Biochemistry, 2012, 57, 54-58.	5.8	20
45	Effects of Elicitors on the Production of Resveratrol and Viniferins in Cell Cultures of <i>Vitis vinifera</i> L. cv Italia. Journal of Agricultural and Food Chemistry, 2011, 59, 9094-9101.	5.2	68
46	Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Applied Microbiology and Biotechnology, 2011, 91, 977-987.	3.6	50
47	Apoptosis-inducing factor and caspase-dependent apoptotic pathways triggered by different grape seed extracts on human colon cancer cell line Caco-2. British Journal of Nutrition, 2010, 104, 824-832.	2.3	46
48	Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae). BMC Plant Biology, 2010, 10, 69.	3.6	32
49	Highâ€performance liquid chromatography/electrospray ionization tandem mass spectrometric investigation of stilbenoids in cell cultures of <i>Vitis vinifera</i> L., cv. Malvasia. Rapid Communications in Mass Spectrometry, 2010, 24, 2065-2073.	1.5	29
50	Stilbene production in cell cultures of <i>Vitis vinifera</i> L. cvs Red Globe and Michele Palieri elicited by methyl jasmonate. Natural Product Research, 2010, 24, 1488-1498.	1.8	25
51	Chitosan enhances xanthone production in <i>Hypericum perforatum</i> subsp. <i>angustifolium</i> cell cultures. Natural Product Research, 2010, 24, 286-293.	1.8	28
52	Anthocyanins and xanthones in the calli and regenerated shoots of Hypericum perforatum var. angustifolium (sin. Fröhlich) Borkh. Plant Physiology and Biochemistry, 2008, 46, 414-420.	5.8	31
53	<i>In vitro</i> asymbiotic germination of <i>Orchis mascula</i> L. Plant Biosystems, 2008, 142, 653-655.	1.6	13
54	Somatic embryogenesis and shoot regeneration from leaf derived callus ofHypericum perforatumvar.angustifolium(sin. FrĶhlich) Borkh. Plant Biosystems, 2008, 142, 106-110.	1.6	3

GABRIELLA PASQUA

#	Article	IF	CITATIONS
55	Anthocyanins and flavan-3-ols from grapes and wines of <i>Vitis vinifera</i> cv. Cesanese d'Affile. Natural Product Research, 2008, 22, 1033-1039.	1.8	17
56	Latex lipase of Euphorbia characias L.: An aspecific acylhydrolase with several isoforms. Plant Science, 2007, 172, 722-727.	3.6	23
57	Anthocyanic vacuolar inclusions in cell suspension cultures of <i>Camptotheca acuminata</i> Decne. Caryologia, 2007, 60, 165-168.	0.3	Ο
58	CPT accumulation in the fruit and during early phases of plant development in <i>Camptotheca acuminata</i> Decaisne (Nyssaceae). Natural Product Research, 2007, 21, 1248-1255.	1.8	12
59	Triterpenoids andÂellagic acid derivatives from inÂvitro cultures ofÂCamptothecaÂacuminata Decaisne. Plant Physiology and Biochemistry, 2006, 44, 220-225.	5.8	24
60	Synthesis and/or accumulation of bioactive molecules in the in vivo and in vitro root. Plant Biosystems, 2005, 139, 180-188.	1.6	12
61	The effect of growth regulators and sucrose on anthocyanin production in Camptotheca acuminata cell cultures. Plant Physiology and Biochemistry, 2005, 43, 293-298.	5.8	52
62	Laticifers in Camptotheca acuminata Decne: distribution and structure. Protoplasma, 2005, 226, 155-161.	2.1	22
63	Xanthones from calli ofHypericum Perforatumsubsp.Perforatum. Natural Product Research, 2005, 19, 171-176.	1.8	17
64	Cellular localisation of the anti-cancer drug camptothecin in Camptotheca acuminata Decne (Nyssaceae). European Journal of Histochemistry, 2004, 48, 321-7.	1.5	25
65	Lipolytic isoenzymes from Euphorbia latex. Plant Science, 2003, 165, 577-582.	3.6	29
66	Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Science, 2003, 165, 977-982.	3.6	98
67	Accumulation of essential oils in relation to root differentiation in Angelica archangelica L European Journal of Histochemistry, 2003, 47, 87.	1.5	17
68	Abietane Diterpenoids from Callus Cultures of Taxus baccata. Planta Medica, 2002, 68, 764-766.	1.3	13
69	Effects of the culture medium pH and ion uptake in in vitro vegetative organogenesis in thin cell layers of tobacco. Plant Science, 2002, 162, 947-955.	3.6	17
70	The role of isoprenoid accumulation and oxidation in sealing wounded needles of Mediterranean pines. Plant Science, 2002, 163, 355-359.	3.6	30
71	Effects of alkaloid precursor feeding on a Camptotheca acuminata cell line. Plant Physiology and Biochemistry, 2002, 40, 749-753.	5.8	38
72	In vitro plant regeneration of Vismia guianensis through organogenesis. Plant Cell, Tissue and Organ Culture, 1999, 58, 81-85.	2.3	4

Gabriella Pasqua

#	Article	IF	CITATIONS
73	Comparison between metabolite productions in cell culture and in whole plant of Maclura pomifera. Phytochemistry, 1995, 39, 575-580.	2.9	56
74	Accumulation of vismione A in regenerated plants of Vismia guianensis DC. Protoplasma, 1995, 189, 9-16.	2.1	12
75	Two isoflavones and a flavone from the fruits of Maclura pomifera. Phytochemistry, 1994, 37, 893-898.	2.9	68
76	Metabolites from in vitro cultures of Cassia didymobotrya. Phytochemistry, 1991, 30, 1849-1854.	2.9	36
77	Flower formation in vitro in a quantitative short-day tobacco: interrelation between photoperiod and infructescence development. Physiologia Plantarum, 1991, 82, 333-338.	5.2	2
78	Flower formation in vitro in a quantitative short-day tobacco: interrelation between photoperiod and infructescence development. Physiologia Plantarum, 1991, 82, 333-338.	5.2	1
79	Influence of exogenous sucrose on the greening of oat. Journal of Structural Biology, 1989, 102, 249-254.	0.8	3
80	The effect of photoperiod on flower formation in vitro in a quantitative short-day cultivar of Nicotiana tabacum. Physiologia Plantarum, 1989, 76, 233-239.	5.2	14
81	The histogenesis of somaclones from tomato (Lycopersicon esculentum Mill.) cotyledons. Protoplasma, 1988, 142, 156-163.	2.1	13
82	Nuclear DNA changes during plant development and the morphogenetic response in vitro of Nicotiana tabacum tissues. Plant Science, 1987, 53, 73-79.	3.6	38
83	Transformed Phenotype and In vitro Flower Neoformation in Tobacco Hairy Root Regenerants. Journal of Plant Physiology, 1987, 130, 221-231.	3.5	12
84	Free and conjugated polyamines during de novo floral and vegetative bud formation in thin cell layers of tobacco. Physiologia Plantarum, 1987, 70, 453-460.	5.2	110
85	In vitro floral morphogenesis in a doubled haploid tobacco. Plant Science, 1986, 46, 69-75.	3.6	8