Dmytro O Minchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9011308/publications.pdf

Version: 2024-02-01

92 papers 1,023 citations

16 h-index 29 g-index

94 all docs 94 docs citations 94 times ranked 1191 citing authors

#	Article	IF	CITATIONS
1	The impact of glutamine deprivation on the expression of MEIS3, SPAG4, LHX1, LHX2, and LHX6 genes in ERN1 knockdown U87 glioma cells. Endocrine Regulations, 2022, 56, 38-47.	0.5	1
2	The impact of single walled carbon nanotubes on the expression of microRNA in zebrafish (Danio) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
3	Exposure to nanographene oxide induces gene expression dysregulation in normal human astrocytes. Endocrine Regulations, 2022, 56, 216-226.	0.5	1
4	The low doses of SWCNTs affect the expression of proliferation and apoptosis related genes in normal human astrocytes. Current Research in Toxicology, 2021, 2, 64-71.	1.3	11
5	ERN1 knockdown modifies the impact of glucose and glutamine deprivations on the expression of EDN1 and its receptors in glioma cells. Endocrine Regulations, 2021, 55, 72-82.	0.5	4
6	Inhibition of ERN1 Signaling is Important for the Suppression of Tumor Growth. Clinical Cancer Drugs, 2021, 8, 27-38.	0.3	3
7	Expression of <i>IDE</i> and <i>PITRM1</i> genes in ERN1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocrine Regulations, 2020, 54, 183-195.	0.5	11
8	ERN1 knockdown modifies the effect of glucose deprivation on homeobox gene expressions in U87 glioma cells. Endocrine Regulations, 2020, 54, 196-206.	0.5	3
9	ОБÒĐĐ£ĐĐ¢Đ£Đ'ĐĐĐĐ⁻ ĐЕОĐ'Đ¥Đ†Đ"ĐĐžĐ¡Đ¢Đ† Đ'Đ⁻ВЧЕĐĐĐ⁻ ĐœĐžĐ›Đ•ĐšĐ£Đ›Đ⁻ĐĐОЇ БІE)žĐæ DØ Đ"E)†Ð�ВМÐ-€
10	Silencing of NAMPT leads to up-regulation of insulin receptor substrate 1 gene expression in U87 glioma cells. Endocrine Regulations, 2020, 54, 31-42.	0.5	4
11	Insulin receptor substrate 1 gene expression is strongly up-regulated by HSPB8 silencing in U87 glioma cells. Endocrine Regulations, 2020, 54, 231-243.	0.5	1
12	Insulin resistance in obese adolescents affects the expression of genes associated with immune response. Endocrine Regulations, 2019, 53, 71-82.	0.5	12
13	Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocrine Regulations, 2019, 53, 250-262.	0.5	21
14	Expression of genes encoding IGF1, IGF2, and IGFBPs in blood of obese adolescents with insulin resistance. Endocrine Regulations, 2019, 53, 34-45.	0.5	14
15	Effect of glucose deprivation on the expression of genes encoding glucocorticoid receptor and some related factors in ERN1-knockdown U87 glioma cells. Endocrine Regulations, 2019, 53, 237-249.	0.5	13
16	Insulin resistance in obese adolescents and adult men modifies the expression of proliferation related genes. Ukrainian Biochemical Journal, 2019, 91, 65-77.	0.1	1
17	Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicology in Vitro, 2018, 52, 122-130.	1.1	19
18	Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition. Endocrine Regulations, 2017, 51, 8-19.	0.5	13

#	Article	IF	CITATIONS
19	Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles. Endocrine Regulations, 2017, 51, 84-95.	0.5	3
20	Inhibition of IRE1 modifies hypoxic regulation of G6PD, GPI, TKT, TALDO1, PGLS and RPIA genes expression in U87 glioma cells. Ukrainian Biochemical Journal, 2017, 89, 38-49.	0.1	2
21	Expression of tumor growth related genes in IRE1 knockdown U87 glioma cells: effect of hypoxia. Ukrainian Biochemical Journal, 2017, 89, 40-51.	0.1	7
22	Effect of Hypoxia on the Expression of a Subset of Proliferation Related Genes in IRE1 Knockdown U87 Glioma Cells. Advances in Biological Chemistry, 2017, 07, 195-210.	0.2	6
23	IRE1 knockdown modifies hypoxic regulation of cathepsins and LONP1 genes expression in u87 glioma cells. Ukrainian Biochemical Journal, 2017, 89, 55-69.	0.1	1
24	Effect of chromium disilicide and titanium nitride nanoparticles on the expression of NAMPT, E2F8, FAS, TBX3, IL13RA2, and UPS7 genes in mouse liver. Ukrainian Biochemical Journal, 2017, 89, 31-42.	0.1	0
25	The expression of TLR2, TLR4, TNF and ADD3 genes in the obese adolescents and adult men with different sensitivity to insulin. Sovremenna \tilde{A}^{φ} Pediatri \tilde{A}^{φ} , 2017, , 147-152.	0.1	0
26	Expression of ubiquitin specific peptidase and ATG7 genes in U87 glioma cells upon glutamine deprivation. Ukrainian Biochemical Journal, 2017, 89, 52-61.	0.1	2
27	The expression of DDX58, IFIH1, IFI16, and AIM2 genes in obese adolescents and men with insulin resistance. Sovremennaâ Pediatriâ, 2017, , 106-111.	0.1	1
28	IRE- $1\hat{l}_{\pm}$ regulates expression of ubiquitin specific peptidases during hypoxic response in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2016, 3, .	0.2	2
29	Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells. Endocrine Regulations, 2016, 50, 127-136.	0.5	12
30	Effect of hypoxia on the expression of genes encoding insulin-like growth factors and some related proteins in U87 glioma cells without IRE1 function. Endocrine Regulations, 2016, 50, 43-54.	0.5	22
31	Singleâ€walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 180-188.	0.5	5
32	Inhibition of IRE1 signaling affects expression of a subset genes encoding for TNF-related factors and receptors and modifies their hypoxic regulation in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2016, 3 , .	0.2	8
33	Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of IRE1 signaling enzyme. Ukrainian Biochemical Journal, 2016, 88, 11-21.	0.1	6
34	Inhibition of IRE1 modifies the hypoxic regulation of GADD family gene expressions in U87 glioma cells. Ukrainian Biochemical Journal, 2016, 88, 25-34.	0.1	5
35	Effect of hypoxia on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells. Ukrainian Biochemical Journal, 2016, 88, 54-65.	0.1	5
36	The role of the TNF receptors and apoptosis inducing ligands in tumor growth. Ukrainian Biochemical Journal, 2016, 88, 18-37.	0.1	10

3

#	Article	IF	Citations
37	Hypoxic regulation of MYBL1, MEST, TCF3, TCF8, GTF2B, GTF2F2 and SNAI2 genes expression in U87 glioma cells upon IRE1 inhibition. Ukrainian Biochemical Journal, 2016, 88, 52-62.	0.1	6
38	The expression of NAMPT, PLOD2, FBN1, and IFRD genes in blood cells in the obese adolescents with insulin resistance. Sovremennaâ Pediatriâ, 2016, 75, 132-136.	0.1	0
39	Expression of IGFBP6, IGFBP7, NOV, CYR61, WISP1 and WISP2 genes in U87 glioma cells in glutamine deprivation condition. Ukrainian Biochemical Journal, 2016, 88, 66-77.	0.1	6
40	Inhibition of kinase and endoribonuclease activity of ERN1/IRE1 \hat{l}_{\pm} affects expression of proliferation related genes in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2015, 2, .	0.2	27
41	Inhibition of IRE1 modifies effect of glucose deprivation on the expression of TNF?-related genes in U87 glioma cells. Ukrainian Biochemical Journal, 2015, 87, 36-51.	0.1	5
42	Expression of Endoplasmic Reticulum Stress Related Genes in Blood Cells of Obese Boys with and without Insulin Resistance. International Journal of Biomedicine, 2015, 5, 24-29.	0.1	1
43	Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress. Endocrine Regulations, 2015, 49, 73-83.	0.5	27
44	IRE1 inhibition affects the expression of insulin-like growth factor binding protein genes and modifies its sensitivity to glucose deprivation in U87 glioma cells. Endocrine Regulations, 2015, 49, 185-197.	0.5	16
45	Expression of circadian genes in subcutaneous adipose tissue of obese men with glucose intolerance and type 2 diabetes. Journal of Experimental and Integrative Medicine, 2015, 5, 23.	0.1	2
46	IRE-1alpha Signaling as a Key Target for Suppression of Tumor Growth. Single Cell Biology, 2015, 04, .	0.2	5
47	Dominant-Negative Constructs of IRE-1alpha as an Effective way to Suppression of Tumor Growth through the Inhibition of Cell Proliferation. Journal of Modern Medicinal Chemistry, 2015, 3, 35-43.	0.8	1
48	Molecular bases of the development of obesity and its metabolic complications in children. Sovremenna \tilde{A}^{φ} Pediatri \tilde{A}^{φ} , 2015, , 109-112.	0.1	2
49	Expression of VEGF, E2F8, COL6A1, IGFBP2, PLK1, RB1, RBL1 and TP53 genes in pediatric glioma. Sovremenna \tilde{A}^{φ} Pediatri \tilde{A}^{φ} , 2015, , 126-129.	0.1	0
50	Expression of TIMP1, TIMP2, THBS1 and THBS2 genes in blood cells of the obese adolescents with normal and impaired insulin sensitivity. Sovremenna \tilde{A}^{c} Pediatri \tilde{A}^{c} , 2015, , 119-122.	0.1	1
51	Development of insulin resistance in the obese adolescents changes the expression level of CLU, PCOLCE, COL5A1 and TYMP genes in blood cells. Sovremennaâ Pediatriâ, 2015, 71, 127-130.	0.1	0
52	Effect of hypoxia on the expression of genes that encode some IGFBP and CCN proteins in U87 glioma cells depends on IRE1 signaling. Ukrainian Biochemical Journal, 2015, 87, 52-63.	0.1	9
53	Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2014, 1, .	0.2	21
54	Effect of hypoxia on the expression of CCN2, PLAU, PLAUR, SLURP1, PLAT and ITGB1 genes in ERN1 knockdown U87 glioma cells. Ukrainian Biochemical Journal, 2014, 86, 79-89.	0.1	16

#	Article	IF	Citations
55	ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells. Ukrainian Biochemical Journal, 2014, 86, 90-102.	0.1	7
56	Molecular Mechanisms of ERN1-Mediated Angiogenesis. International Journal of Physiology and Pathophysiology, 2014, 5, 1-22.	0.1	10
57	Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World Journal of Gastroenterology, 2014, 20, 13705.	1.4	58
58	Endoplasmic Reticulum Stress and Angiogenesis in Cancer. International Journal of Physiology and Pathophysiology, 2014, 5, 261-281.	0.1	2
59	Effect of ERN1 knockdown on the expression of MAP3K5, MAP4K3, CIB1, RIPK1, and RIPK2 genes in U87 glioma cells and its hypoxic regulation. Journal of Investigational Biochemistry, 2014, 3, 101.	0.4	0
60	Expression of phosphoribosyl pyrophosphate synthetase genes in U87 glioma cells with ERN1 knockdown: effect of hypoxia and endoplasmic reticulum stress. Ukrainian Biochemical Journal, 2014, 86, 74-83.	0.1	3
61	High epiregulin expression in human U87 glioma cells relies on IRE1 \hat{l}_{\pm} and promotes autocrine growth through EGF receptor. BMC Cancer, 2013, 13, 597.	1.1	81
62	Effect of cerium dioxide nanoparticles on the expression of selected growth and transcription factors in human astrocytes. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 156-160.	0.5	6
63	Effect of C ₆₀ Fullerene on the expression of ERN1 signaling related genes in human astrocytes. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 150-155.	0.5	2
64	Insulin receptor, IRS1, IRS2, INSIG1, INSIG2, RRAD, and BAIAP2 gene expressions in glioma U87 cells with ERN1 loss of function: effect of hypoxia and glutamine or glucose deprivation. Endocrine Regulations, 2013, 47, 15-26.	0.5	21
65	The Expression of <i>TIMP</i> 1, <i>TIMP</i> 2, <i>VCAN</i> , <i>, <i>SPARC</i>, <i>CLEC</i>3<i>B</i> and <i>E</i>2<i>F</i>1 in Subcutaneous Adipose Tissue of Obese Males and Glucose Intolerance, CellBio, 2013, 02, 45-53.</i>	1.3	7
66	IRE-1 Dependent Expression of Phosphoribosyl Pyrophosphate Synthetase Genes in U87 Glioma Cells: Effect of Glucose or Glutamine Deprivation. International Journal of Genomic Medicine, 2013, 1, .	0.0	0
67	Molecular mechanisms of regulation of gene expression at hypoxia. Studia Biologica = БІОЛОГІЧĐІ Biologica, 2013, 7, 159-176.	Đ¡Đ¢Đ£Đ'	'ІЇ Studia
68	Expression of circadian gens in different rat tissues is sensitive marker of in vivo silver nanoparticles action. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012016.	0.3	1
69	Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and retinoblastoma-related genes in ERN1 knockdown glioma U87 cell line. American Journal of Molecular Biology, 2012, 02, 21-31.	0.1	6
70	The vascular endothelial growth factor genes expression in glioma U87 cells is dependent from ERN1 signaling enzyme function. Advances in Biological Chemistry, 2012, 02, 198-206.	0.2	8
71	Expression of casein kinase genes in glioma cell line U87: Effect of hypoxia and glucose or glutamine deprivation. Natural Science, 2012, 04, 38-46.	0.2	2

Hypoxic regulation of the expression of anti-angiogenic genes in U87 glioma cells with loss of function of ern1 signaling enzyme. Studia Biologica = 0.012, 6, 1.002 function of ern1 signaling enzyme. Studia Biologica = 0.012, 6, 1.002 function of ern1 signaling enzyme. Studia Biologica = 0.012 function of ern1 signaling enzyme.

#	Article	IF	CITATIONS
73	Expression of anti-angiogenic genes in subcutaneous adipose tissue of the obese individuals with pre-diabetes and type 2 diabetes. Studia Biologica = БІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica,	2012 <mark>,</mark> 6, 1	7-3 ¹ 2.
74	Expression of SNF1/AMPâ \in activated protein kinase and casein kinaseâ \in 1 $\hat{l}\mu$ in different rat tissues are sensitive markers of in vivo silver nanoparticles action. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 118-122.	0.5	4
75	Endoplasmic reticulum–nuclei signaling enzyme-1 knockdown modulates effect of hypoxia and ischemia on the expression of circadian genes in glioma cells. Studia Biologica = БІОĐንОГІЧĐІ Đ¡Đ¢Đ 2011, 5, 37-50.	£ Ð ° Ð †Ð‡	St o dia Biolog
76	Expression of hexokinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase genes in ERN1 knockdown glioma U87 cells: effect of hypoxia and glutamine or glucose deprivation. Studia Biologica = ĐʻІОĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐ	0.1	2
77	Effect of hypoxia, glutamine and glucose deprivation on the expression of mRNA of the retinoblastoma binding proteins in glioma cells. Studia Biologica = ĐʻІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Stu	dia Biolog	ica, 2011, 5, 5
78	Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neuroscience, 2010, 11, 53.	0.8	84
79	Disturbance of the expression of circadian genes Per1, Clock and BMal1 in rat liver, lung, testis, kidney and heart under silver nanoparticles action on organism. Studia Biologica = БІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ" 4, 5-14.	D †D‡1 Stud	ia Biologica, 2
80	Unique alternative splice variants of mouse and human 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2 mRNA. Studia Biologica = БІОЛОГІЧĐІ Đ _Î Đ 2010, 4, 13-24.	¢Đ ఓĐ" Іl	Ї & tudia Biol
81	6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase genes: structural organization, expression and regulation of the expression. Studia Biologica = БІОЛОГІЧĐІ Đ¡Đ¢ĐžĐ"ІЇ Studia Biologica, 2009	, 3 ⁰ 123-1	40 ¹
82	Expression of the VEGF, Glut1 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 in human cancers of the lung, colon and stomach. Studia Biologica = ĐʻІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Stu	dia Biolog	ica ³ , 2009, 3, 2
83	Effect of methyl tertial butyl ether on the expression of mRNA coding for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and VEGF in rat liver and lung. Studia Biologica = ĐʻІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica, 2009, 3, 5-14.	0.1	0
84	6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase mRNA expression in streptozotocin-diabetic rats. Biopolymers and Cell, 2008, 24, 260-266.	0.1	1
85	Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers Acta Biochimica Polonica, 2006, 53, 789-799.	0.3	62
86	Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochimica Polonica, 2006, 53, 789-99.	0.3	29
87	Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: Expression and hypoxic regulation. Molecular and Cellular Biochemistry, 2005, 280, 227-234.	1.4	24
88	W11-P-009 Upregulation of the transcript level of P-selectin in the heart of C57BL/6 (wild-type), LDL-receptor and apoE knockout mice in response to LPS. Atherosclerosis Supplements, 2005, 6, 58-59.	1.2	0
89	Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie, 2005, 87, 1005-1010.	1.3	79
90	Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines Acta Biochimica Polonica, 2005, 52, 881-888.	0.3	25

#	Article	IF	CITATIONS
91	Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines. Acta Biochimica Polonica, 2005, 52, 881-8.	0.3	11
92	Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1î± activation. FEBS Letters, 2004, 576, 14-20.	1.3	101