Dmytro O Minchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9011308/publications.pdf Version: 2024-02-01

DMYTRO O MINCHENKO

#	Article	IF	CITATIONS
1	Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-11± activation. FEBS Letters, 2004, 576, 14-20.	1.3	101
2	Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neuroscience, 2010, 11, 53.	0.8	84
3	High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer, 2013, 13, 597.	1.1	81
4	Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie, 2005, 87, 1005-1010.	1.3	79
5	Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers Acta Biochimica Polonica, 2006, 53, 789-799.	0.3	62
6	Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World Journal of Gastroenterology, 2014, 20, 13705.	1.4	58
7	Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochimica Polonica, 2006, 53, 789-99.	0.3	29
8	Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferationrelated genes in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2015, 2, .	0.2	27
9	Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress. Endocrine Regulations, 2015, 49, 73-83.	0.5	27
10	Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines Acta Biochimica Polonica, 2005, 52, 881-888.	0.3	25
11	Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: Expression and hypoxic regulation. Molecular and Cellular Biochemistry, 2005, 280, 227-234.	1.4	24
12	Effect of hypoxia on the expression of genes encoding insulin-like growth factors and some related proteins in U87 glioma cells without IRE1 function. Endocrine Regulations, 2016, 50, 43-54.	0.5	22
13	Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2014, 1, .	0.2	21
14	Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocrine Regulations, 2019, 53, 250-262.	0.5	21
15	Insulin receptor, IRS1, IRS2, INSIG1, INSIG2, RRAD, and BAIAP2 gene expressions in glioma U87 cells with ERN1 loss of function: effect of hypoxia and glutamine or glucose deprivation. Endocrine Regulations, 2013, 47, 15-26.	0.5	21
16	Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicology in Vitro, 2018, 52, 122-130.	1.1	19
17	Effect of hypoxia on the expression of CCN2, PLAU, PLAUR, SLURP1, PLAT and ITGB1 genes in ERN1 knockdown U87 glioma cells. Ukrainian Biochemical Journal, 2014, 86, 79-89.	0.1	16
18	IRE1 inhibition affects the expression of insulin-like growth factor binding protein genes and modifies its sensitivity to glucose deprivation in U87 glioma cells. Endocrine Regulations, 2015, 49, 185-197.	0.5	16

DMYTRO O MINCHENKO

#	Article	IF	CITATIONS
19	Expression of genes encoding IGF1, IGF2, and IGFBPs in blood of obese adolescents with insulin resistance. Endocrine Regulations, 2019, 53, 34-45.	0.5	14
20	Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition. Endocrine Regulations, 2017, 51, 8-19.	0.5	13
21	Effect of glucose deprivation on the expression of genes encoding glucocorticoid receptor and some related factors in ERN1-knockdown U87 glioma cells. Endocrine Regulations, 2019, 53, 237-249.	0.5	13
22	Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells. Endocrine Regulations, 2016, 50, 127-136.	0.5	12
23	Insulin resistance in obese adolescents affects the expression of genes associated with immune response. Endocrine Regulations, 2019, 53, 71-82.	0.5	12
24	The low doses of SWCNTs affect the expression of proliferation and apoptosis related genes in normal human astrocytes. Current Research in Toxicology, 2021, 2, 64-71.	1.3	11
25	Expression of <i>IDE</i> and <i>PITRM1</i> genes in ERN1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocrine Regulations, 2020, 54, 183-195.	0.5	11
26	Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines. Acta Biochimica Polonica, 2005, 52, 881-8.	0.3	11
27	The role of the TNF receptors and apoptosis inducing ligands in tumor growth. Ukrainian Biochemical Journal, 2016, 88, 18-37.	0.1	10
28	Molecular Mechanisms of ERN1-Mediated Angiogenesis. International Journal of Physiology and Pathophysiology, 2014, 5, 1-22.	0.1	10
29	Effect of hypoxia on the expression of genes that encode some IGFBP and CCN proteins in U87 glioma cells depends on IRE1 signaling. Ukrainian Biochemical Journal, 2015, 87, 52-63.	0.1	9
30	Inhibition of IRE1 signaling affects expression of a subset genes encoding for TNF-related factors and receptors and modifies their hypoxic regulation in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2016, 3, .	0.2	8
31	The vascular endothelial growth factor genes expression in glioma U87 cells is dependent from ERN1 signaling enzyme function. Advances in Biological Chemistry, 2012, 02, 198-206.	0.2	8
32	ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells. Ukrainian Biochemical Journal, 2014, 86, 90-102.	0.1	7
33	Expression of tumor growth related genes in IRE1 knockdown U87 glioma cells: effect of hypoxia. Ukrainian Biochemical Journal, 2017, 89, 40-51.	0.1	7
34	The Expression of <i>TIMP</i> 1, <i>TIMP</i> 2, <i>VCAN</i> , <i>SPARC</i> , <i>CLEC</i> 3 <i>B</i> and <i>E</i> 2 <i>F</i> 1 in Subcutaneous Adipose Tissue of Obese Males and Glucose Intolerance, CellBio, 2013, 02, 45-53.	1.3	7
35	The impact of single walled carbon nanotubes on the expression of microRNA in zebrafish (Danio) Tj ETQq1 1	0.784314 rg 0.5	gBT ₄ Overlock
36	Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and retinoblastoma-related genes in ERN1 knockdown glioma U87 cell line. American Journal of Molecular	0.1	6

Biology, 2012, 02, 21-31.

#	Article	IF	CITATIONS
37	Effect of cerium dioxide nanoparticles on the expression of selected growth and transcription factors in human astrocytes. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 156-160.	0.5	6
38	Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of IRE1 signaling enzyme. Ukrainian Biochemical Journal, 2016, 88, 11-21.	0.1	6
39	Hypoxic regulation of MYBL1, MEST, TCF3, TCF8, GTF2B, GTF2F2 and SNAI2 genes expression in U87 glioma cells upon IRE1 inhibition. Ukrainian Biochemical Journal, 2016, 88, 52-62.	0.1	6
40	Effect of Hypoxia on the Expression of a Subset of Proliferation Related Genes in IRE1 Knockdown U87 Glioma Cells. Advances in Biological Chemistry, 2017, 07, 195-210.	0.2	6
41	Expression of IGFBP6, IGFBP7, NOV, CYR61, WISP1 and WISP2 genes in U87 glioma cells in glutamine deprivation condition. Ukrainian Biochemical Journal, 2016, 88, 66-77.	0.1	6
42	Singleâ€walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 180-188.	0.5	5
43	Inhibition of IRE1 modifies effect of glucose deprivation on the expression of TNF?-related genes in U87 glioma cells. Ukrainian Biochemical Journal, 2015, 87, 36-51.	0.1	5
44	Inhibition of IRE1 modifies the hypoxic regulation of GADD family gene expressions in U87 glioma cells. Ukrainian Biochemical Journal, 2016, 88, 25-34.	0.1	5
45	Effect of hypoxia on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells. Ukrainian Biochemical Journal, 2016, 88, 54-65.	0.1	5
46	IRE-1alpha Signaling as a Key Target for Suppression of Tumor Growth. Single Cell Biology, 2015, 04, .	0.2	5
47	Expression of SNF1/AMPâ€activated protein kinase and casein kinaseâ€1ε in different rat tissues are sensitive markers of in vivo silver nanoparticles action. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 118-122.	0.5	4
48	ERN1 knockdown modifies the impact of glucose and glutamine deprivations on the expression of EDN1 and its receptors in glioma cells. Endocrine Regulations, 2021, 55, 72-82.	0.5	4
49	Silencing of NAMPT leads to up-regulation of insulin receptor substrate 1 gene expression in U87 glioma cells. Endocrine Regulations, 2020, 54, 31-42.	0.5	4
50	Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles. Endocrine Regulations, 2017, 51, 84-95.	0.5	3
51	ERN1 knockdown modifies the effect of glucose deprivation on homeobox gene expressions in U87 glioma cells. Endocrine Regulations, 2020, 54, 196-206.	0.5	3
52	Inhibition of ERN1 Signaling is Important for the Suppression of Tumor Growth. Clinical Cancer Drugs, 2021, 8, 27-38.	0.3	3
53	Expression of the VEGF, Glut1 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 in human cancers of the lung, colon and stomach. Studia Biologica = ĐʿІОЛОĐʿʿІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Stu	dia ⁰ Biolog	ica ³ 2009, 3, 3
54	Expression of phosphoribosyl pyrophosphate synthetase genes in U87 glioma cells with ERN1 knockdown: effect of hypoxia and endoplasmic reticulum stress. Ukrainian Biochemical Journal, 2014, 86, 74-83.	0.1	3

Dmytro O Minchenko

#	Article	IF	CITATIONS
55	Effect of C ₆₀ Fullerene on the expression of ERN1 signaling related genes in human astrocytes. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 150-155.	0.5	2
56	IRE-1α regulates expression of ubiquitin specific peptidases during hypoxic response in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2016, 3, .	0.2	2
57	Inhibition of IRE1 modifies hypoxic regulation of G6PD, GPI, TKT, TALDO1, PGLS and RPIA genes expression in U87 glioma cells. Ukrainian Biochemical Journal, 2017, 89, 38-49.	0.1	2
58	Expression of casein kinase genes in glioma cell line U87: Effect of hypoxia and glucose or glutamine deprivation. Natural Science, 2012, 04, 38-46.	0.2	2
59	Expression of circadian genes in subcutaneous adipose tissue of obese men with glucose intolerance and type 2 diabetes. Journal of Experimental and Integrative Medicine, 2015, 5, 23.	0.1	2
60	Expression of hexokinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase genes in ERN1 knockdown glioma U87 cells: effect of hypoxia and glutamine or glucose deprivation. Studia Biologica = ĐʿІОЛОĐʿʿІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica, 2011, 5, 5-18.	0.1	2
61	Endoplasmic Reticulum Stress and Angiogenesis in Cancer. International Journal of Physiology and Pathophysiology, 2014, 5, 261-281.	0.1	2
62	Molecular bases of the development of obesity and its metabolic complications in children. Sovremennaâ Pediatriâ, 2015, , 109-112.	0.1	2
63	Expression of ubiquitin specific peptidase and ATG7 genes in U87 glioma cells upon glutamine deprivation. Ukrainian Biochemical Journal, 2017, 89, 52-61.	0.1	2
64	Expression of circadian gens in different rat tissues is sensitive marker of in vivo silver nanoparticles action. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012016.	0.3	1
65	Expression of Endoplasmic Reticulum Stress Related Genes in Blood Cells of Obese Boys with and without Insulin Resistance. International Journal of Biomedicine, 2015, 5, 24-29.	0.1	1
66	6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase mRNA expression in streptozotocin-diabetic rats. Biopolymers and Cell, 2008, 24, 260-266.	0.1	1
67	6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase genes: structural organization, expression and regulation of the expression. Studia Biologica = ĐʿІОЛОĐʿʿІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica, 200	9, 3 <mark>, 1</mark> 23-1	140 <mark>.</mark>
68	Disturbance of the expression of circadian genes Per1, Clock and BMal1 in rat liver, lung, testis, kidney and heart under silver nanoparticles action on organism. Studia Biologica = ÐʿІОЛОГІЧÐІ СТУД 4, 5-14.	І Ð ‡IStu	dia Biologica,
69	Expression of anti-angiogenic genes in subcutaneous adipose tissue of the obese individuals with pre-diabetes and type 2 diabetes. Studia Biologica = ĐʿІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica,	2012, 6, 1	17-3 ¹ 2.
70	Dominant-Negative Constructs of IRE-1alpha as an Effective way to Suppression of Tumor Growth through the Inhibition of Cell Proliferation. Journal of Modern Medicinal Chemistry, 2015, 3, 35-43.	0.8	1
71	Expression of TIMP1, TIMP2, THBS1 and THBS2 genes in blood cells of the obese adolescents with normal and impaired insulin sensitivity. Sovremennaâ Pediatriâ, 2015, , 119-122.	0.1	1
72	IRE1 knockdown modifies hypoxic regulation of cathepsins and LONP1 genes expression in u87 glioma cells. Ukrainian Biochemical Journal, 2017, 89, 55-69.	0.1	1

DMYTRO O MINCHENKO

#	Article	IF	CITATIONS
73	The expression of DDX58, IFIH1, IFI16, and AIM2 genes in obese adolescents and men with insulin resistance. Sovremennaâ Pediatriâ, 2017, , 106-111.	0.1	1
74	Insulin resistance in obese adolescents and adult men modifies the expression of proliferation related genes. Ukrainian Biochemical Journal, 2019, 91, 65-77.	0.1	1
75	Insulin receptor substrate 1 gene expression is strongly up-regulated by HSPB8 silencing in U87 glioma cells. Endocrine Regulations, 2020, 54, 231-243.	0.5	1
76	The impact of glutamine deprivation on the expression of MEIS3, SPAG4, LHX1, LHX2, and LHX6 genes in ERN1 knockdown U87 glioma cells. Endocrine Regulations, 2022, 56, 38-47.	0.5	1
77	Exposure to nanographene oxide induces gene expression dysregulation in normal human astrocytes. Endocrine Regulations, 2022, 56, 216-226.	0.5	1
78	W11-P-009 Upregulation of the transcript level of P-selectin in the heart of C57BL/6 (wild-type), LDL-receptor and apoE knockout mice in response to LPS. Atherosclerosis Supplements, 2005, 6, 58-59.	1.2	0
79	Effect of methyl tertial butyl ether on the expression of mRNA coding for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and VEGF in rat liver and lung. Studia Biologica = ĐʿІОЛОĐʿʿІЧĐІ Đ¡Đ¢Đ£Đ''ІЇ Studia Biologica, 2009, 3, 5-14.	0.1	0
80	Unique alternative splice variants of mouse and human 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2 mRNA. Studia Biologica = БІОЛОБ'ІЧĐІ Đ¡Đ 2010, 4, 13-24.	¢ Ð<u>ð</u>.Ð "І {	D‡ & tudia Bio
81	Endoplasmic reticulum–nuclei signaling enzyme-1 knockdown modulates effect of hypoxia and ischemia on the expression of circadian genes in glioma cells. Studia Biologica = БІОЛОГІЧÐІ Ð¡Đ¢Đ 2011, 5, 37-50.	£ĐởІЇ	St o dia Biolog
82	Effect of hypoxia, glutamine and glucose deprivation on the expression of mRNA of the retinoblastoma binding proteins in glioma cells. Studia Biologica = ÐʿÐ†ÐžÐ›ĐžĐ"Ð†Ð§ÐІ СТУДІЇ Stu	dia <mark>Bi</mark> ologi	ca, ⁰ 2011, 5, 5
83	Hypoxic regulation of the expression of anti-angiogenic genes in U87 glioma cells with loss of function of ern1 signaling enzyme. Studia Biologica = ĐʿІОЛОĐʿІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica	, 281 ¹ 2, 6,	15 <mark>-</mark> 28.
84	IRE-1 Dependent Expression of Phosphoribosyl Pyrophosphate Synthetase Genes in U87 Glioma Cells: Effect of Glucose or Glutamine Deprivation. International Journal of Genomic Medicine, 2013, 1, .	0.0	0
85	Molecular mechanisms of regulation of gene expression at hypoxia. Studia Biologica = ÐʿІОЛОÐʻʿІЧÐІ f Biologica, 2013, 7, 159-176.	D;Đ¢Đ£Đ" 0.1	ІЇ Studia
86	Effect of ERN1 knockdown on the expression of MAP3K5, MAP4K3, CIB1, RIPK1, and RIPK2 genes in U87 glioma cells and its hypoxic regulation. Journal of Investigational Biochemistry, 2014, 3, 101.	0.4	0
87	Expression of VEGF, E2F8, COL6A1, IGFBP2, PLK1, RB1, RBL1 and TP53 genes in pediatric glioma. Sovremennaâ Pediatriâ, 2015, , 126-129.	0.1	0
88	Development of insulin resistance in the obese adolescents changes the expression level of CLU, PCOLCE, COL5A1 and TYMP genes in blood cells. Sovremennaâ Pediatriâ, 2015, 71, 127-130.	0.1	0
89	The expression of NAMPT, PLOD2, FBN1, and IFRD genes in blood cells in the obese adolescents with insulin resistance. Sovremennaâ Pediatriâ, 2016, 75, 132-136.	0.1	0
90	Effect of chromium disilicide and titanium nitride nanoparticles on the expression of NAMPT, E2F8, FAS, TBX3, IL13RA2, and UPS7 genes in mouse liver. Ukrainian Biochemical Journal, 2017, 89, 31-42.	0.1	0

#	Article	IF	CITATIONS
91	The expression of TLR2, TLR4, TNF and ADD3 genes in the obese adolescents and adult men with different sensitivity to insulin. Sovremennaâ Pediatriâ, 2017, , 147-152.	0.1	0

92 ĐžĐ'ÒĐĐ£ĐĐ¢Đ£Đ'ĐĐĐĐ⁻ ĐЕОĐ'Đ¥Đ†Đ"ĐĐžĐ¡Đ¢Đ† Đ'Đ⁻Đ'ЧĐ•ĐĐĐ⁻ ĐœĐžĐ,ЕКĐ£Đ,Đ⁻ĐĐОЇ Đ'ІĐžĐ**:**@Ď"ІĐ**Φ**Đ' ĐœĐ•Đ