John Douglas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9010804/publications.pdf

Version: 2024-02-01

117453 98622 4,935 108 34 67 citations g-index h-index papers 115 115 115 2983 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Horizontal Peak Ground Acceleration and Spectral Acceleration. Bulletin of Earthquake Engineering, 2005, 3, 1-53.	2.3	435
2	Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Science Reviews, 2003, 61, 43-104.	4.0	389
3	Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 2004, 159, 165-206.	1.0	357
4	On the Selection of Ground-Motion Prediction Equations for Seismic Hazard Analysis. Seismological Research Letters, 2010, 81, 783-793.	0.8	244
5	Reference database for seismic ground-motion in Europe (RESORCE). Bulletin of Earthquake Engineering, 2014, 12, 311-339.	2.3	212
6	Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology, 2012, 16, 451-473.	0.6	176
7	Style-of-Faulting in Ground-Motion Prediction Equations. Bulletin of Earthquake Engineering, 2003, 1, 171-203.	2.3	148
8	Recent and future developments in earthquake ground motion estimation. Earth-Science Reviews, 2016, 160, 203-219.	4.0	142
9	Near-field horizontal and vertical earthquake ground motions. Soil Dynamics and Earthquake Engineering, 2003, 23, 1-18.	1.9	140
10	A Survey of Techniques for Predicting Earthquake Ground Motions for Engineering Purposes. Surveys in Geophysics, 2008, 29, 187-220.	2.1	132
11	Ground-Motion Prediction Equations Based on Data from the Himalayan and Zagros Regions. Journal of Earthquake Engineering, 2009, 13, 1191-1210.	1.4	131
12	Physical vulnerability modelling in natural hazard risk assessment. Natural Hazards and Earth System Sciences, 2007, 7, 283-288.	1.5	124
13	Selection of Ground Motion Prediction Equations for the Global Earthquake Model. Earthquake Spectra, 2015, 31, 19-45.	1.6	115
14	Vector-valued fragility functions for seismic risk evaluation. Bulletin of Earthquake Engineering, 2013, 11, 365-384.	2.3	89
15	High-frequency filtering of strong-motion records. Bulletin of Earthquake Engineering, 2011, 9, 395-409.	2.3	87
16	A \hat{I}^{ϱ} Model for Mainland France. Pure and Applied Geophysics, 2010, 167, 1303-1315.	0.8	80
17	Predicting Ground Motion from Induced Earthquakes in Geothermal Areas. Bulletin of the Seismological Society of America, 2013, 103, 1875-1897.	1.1	76
18	Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bulletin of Earthquake Engineering, 2014, 12, 341-358.	2.3	71

#	Article	IF	CITATIONS
19	Risk-targeted seismic design maps for mainland France. Natural Hazards, 2013, 65, 1999-2013.	1.6	66
20	FRACAS: A capacity spectrum approach for seismic fragility assessment including record-to-record variability. Engineering Structures, 2016, 125, 337-348.	2.6	62
21	Site Classification Using Horizontal-to-vertical Response Spectral Ratios and its Impact when Deriving Empirical Ground-motion Prediction Equations. Journal of Earthquake Engineering, 2007, 11, 712-724.	1.4	59
22	An Updated Probabilistic Seismic Hazard Assessment for Romania and Comparison with the Approach and Outcomes of the SHARE Project. Pure and Applied Geophysics, 2016, 173, 1881-1905.	0.8	59
23	Testing the Applicability of Correlations between Topographic Slope and VS30 for Europe. Bulletin of the Seismological Society of America, 2012, 102, 2585-2599.	1.1	55
24	An investigation of analysis of variance as a tool for exploring regional differences in strong ground motions. Journal of Seismology, 2004, 8, 485-496.	0.6	53
25	Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Vertical Peak Ground Acceleration and Spectral Acceleration. Bulletin of Earthquake Engineering, 2005, 3, 55-73.	2.3	52
26	How Accurate Can Strong Ground Motion Attenuation Relations Be?. Bulletin of the Seismological Society of America, 2001, 91, 1917-1923.	1.1	49
27	Dependency of Near-Field Ground Motions on the Structural Maturity of the Ruptured Faults. Bulletin of the Seismological Society of America, 2009, 99, 2572-2581.	1.1	49
28	What is a Poor Quality Strong-Motion Record?. Bulletin of Earthquake Engineering, 2003, 1, 141-156.	2.3	47
29	Comparison of methods to develop risk-targeted seismic design maps. Bulletin of Earthquake Engineering, 2019, 17, 3727-3752.	2.3	43
30	Modelling the spatial correlation of earthquake ground motion: Insights from the literature, data from the 2016–2017 Central Italy earthquake sequence and ground-motion simulations. Earth-Science Reviews, 2020, 203, 103139.	4.0	42
31	Influence of the Number of Dynamic Analyses on the Accuracy of Structural Response Estimates. Earthquake Spectra, 2015, 31, 97-113.	1.6	41
32	Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear timeâ€history analysis. Earthquake Engineering and Structural Dynamics, 2010, 39, 91-108.	2.5	39
33	Consistency of ground-motion predictions from the past four decades. Bulletin of Earthquake Engineering, 2010, 8, 1515-1526.	2.3	37
34	Modeling the Difference in Ground-Motion Magnitude-Scaling in Small and Large Earthquakes. Seismological Research Letters, 2011, 82, 504-508.	0.8	37
35	Probabilistic seismic hazard assessment for a new-build nuclear power plant site in the UK. Bulletin of Earthquake Engineering, 2019, 17, 1-36.	2.3	36
36	Comparison of the Ranges of Uncertainty Captured in Different Seismic-Hazard Studies. Seismological Research Letters, 2014, 85, 977-985.	0.8	35

#	Article	IF	CITATIONS
37	An Open Distributed Architecture for Sensor Networks for Risk Management. Sensors, 2008, 8, 1755-1773.	2.1	34
38	Making the Most of Available Site Information for Empirical Ground-Motion Prediction. Bulletin of the Seismological Society of America, 2009, 99, 1502-1520.	1.1	34
39	Magnitude scaling of induced earthquakes. Geothermics, 2014, 52, 132-139.	1.5	33
40	Assessing the impact of ground-motion variability and uncertainty on empirical fragility curves. Soil Dynamics and Earthquake Engineering, 2015, 69, 83-92.	1.9	33
41	Evaluation of seismic hazard for the assessment of historical elements at risk: description of input and selection of intensity measures. Bulletin of Earthquake Engineering, 2015, 13, 49-65.	2.3	31
42	Title is missing!. Journal of Earthquake Engineering, 2006, 10, 33.	1.4	30
43	Earthquake early warning and operational earthquake forecasting as real-time hazard information to mitigate seismic risk at nuclear facilities. Bulletin of Earthquake Engineering, 2016, 14, 2495-2512.	2.3	30
44	Assessment of ground motion variability and its effects on seismic hazard analysis: a case study for iceland. Bulletin of Earthquake Engineering, 2011, 9, 931-953.	2.3	29
45	A preliminary investigation of strong-motion data from the French Antilles. Journal of Seismology, 2006, 10, 271-299.	0.6	28
46	Comparing predicted and observed ground motions from subduction earthquakes in the Lesser Antilles. Journal of Seismology, 2009, 13, 577-587.	0.6	26
47	Testing the Validity of Simulated Strong Ground Motion from the Dynamic Rupture of a Finite Fault, by Using Empirical Equations. Bulletin of Earthquake Engineering, 2006, 4, 211-229.	2.3	25
48	Fragility curves for risk-targeted seismic design maps. Bulletin of Earthquake Engineering, 2014, 12, 1479-1491.	2.3	25
49	Capturing Geographically-Varying Uncertainty in Earthquake Ground Motion Models or What We Think We Know May Change. Geotechnical, Geological and Earthquake Engineering, 2018, , 153-181.	0.1	25
50	Comparison of Soil Nonlinearity (<i>In Situ</i> Stress–Strain Relation and G/Gmax Reduction) Observed in Strongâ€Motion Databases and Modeled in Groundâ€Motion Prediction Equations. Bulletin of the Seismological Society of America, 2019, 109, 178-186.	1.1	23
51	GROUND-MOTION PREDICTION EQUATIONS FOR SOUTHERN SPAIN AND SOUTHERN NORWAY OBTAINED USING THE COMPOSITE MODEL PERSPECTIVE. Journal of Earthquake Engineering, 2006, 10, 33-72.	1.4	22
52	Peak ground accelerations from large (MÂ≥Â7.2) shallow crustal earthquakes: a comparison with predictions from eight recent ground-motion models. Bulletin of Earthquake Engineering, 2018, 16, 1-21.	2.3	21
53	Investigating strong ground-motion variability using analysis of variance and two-way-fit plots. Bulletin of Earthquake Engineering, 2008, 6, 389-405.	2.3	20
54	On the Incorporation of the Effect of Crustal Structure into Empirical Strong Ground Motion Estimation. Bulletin of Earthquake Engineering, 2004, 2, 75-99.	2.3	19

#	Article	IF	CITATIONS
55	Long-period earthquake ground displacements recorded on Guadeloupe (French Antilles). Earthquake Engineering and Structural Dynamics, 2007, 36, 949-963.	2.5	19
56	Using Estimated Risk to Develop Stimulation Strategies for Enhanced Geothermal Systems. Pure and Applied Geophysics, 2014, 171, 1847-1858.	0.8	18
57	Reappraisal of surface wave magnitudes in the Eastern Mediterranean region and the Middle East. Geophysical Journal International, 2000, 141, 357-373.	1.0	17
58	Selecting ground-motion models developed for induced seismicity in geothermal areas. Geophysical Journal International, 2013, 195, 1314-1322.	1.0	17
59	Evaluating alternative approaches for the seismic design of structures. Bulletin of Earthquake Engineering, 2020, 18, 4331-4361.	2.3	17
60	Weighing the importance of model uncertainty against parameter uncertainty in earthquake loss assessments. Soil Dynamics and Earthquake Engineering, 2014, 58, 1-9.	1.9	16
61	Inferred ground motions on Guadeloupe during the 2004 Les Saintes earthquake. Bulletin of Earthquake Engineering, 2007, 5, 363-376.	2.3	15
62	Consistency of ground-motion predictions from the past four decades: peak ground velocity and displacement, Arias intensity and relative significant duration. Bulletin of Earthquake Engineering, 2012, 10, 1339-1356.	2.3	15
63	Assessing Components of Groundâ€Motion Variability from Simulations for the Marmara Sea Region (Turkey). Bulletin of the Seismological Society of America, 2016, 106, 300-306.	1.1	15
64	Inferring Earthquake Groundâ€Motion Fields with Bayesian Networks. Bulletin of the Seismological Society of America, 2017, 107, 2792-2808.	1.1	15
65	Risk Targeting in Seismic Design Codes: The State of the Art, Outstanding Issues and Possible Paths Forward. Springer Natural Hazards, 2018, , 211-223.	0.1	13
66	Investigating Possible Regional Dependence in Strong Ground Motions. Geotechnical, Geological and Earthquake Engineering, 2011, , 29-38.	0.1	13
67	The importance of crustal structure in explaining the observed uncertainties in ground motion estimation. Bulletin of Earthquake Engineering, 2007, 5, 17-26.	2.3	12
68	Examining the contribution of near real-time data for rapid seismic loss assessment of structures. Structural Health Monitoring, 2022, 21, 118-137.	4.3	12
69	Seismic risk management through insurance and its sensitivity to uncertainty in the hazard model. Natural Hazards, 2021, 108, 1629-1657.	1.6	12
70	Accounting for end-user preferences in earthquake early warning systems. Bulletin of Earthquake Engineering, 2016, 14, 297-319.	2.3	11
71	Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?. Journal of Seismology, 2018, 22, 589-604.	0.6	11
72	Building self-consistent, short-term earthquake probability (STEP) models: improved strategies and calibration procedures. Annals of Geophysics, 2010, 53, .	0.5	11

#	Article	IF	Citations
73	Accounting for Site Characterization Uncertainties When Developing Ground-Motion Prediction Equations. Bulletin of the Seismological Society of America, 2011, 101, 1101-1108.	1.1	10
74	Influence of Super-Shear Earthquake Rupture Models on Simulated Near-Source Ground Motion from the 1999 Izmit, Turkey, Earthquake. Bulletin of the Seismological Society of America, 2011, 101, 726-741.	1.1	10
75	Eurocode 8-compatible synthetic time-series as input to dynamic analysis. Bulletin of Earthquake Engineering, 2014, 12, 755-768.	2.3	10
76	A streamlined approach for the seismic hazard assessment of a new nuclear power plant in the UK. Bulletin of Earthquake Engineering, 2019, 17, 37-54.	2.3	9
77	Nomogram to help explain probabilistic seismic hazard. Journal of Seismology, 2020, 24, 221-228.	0.6	9
78	Connecting Hazard Analysts and Risk Managers to Sensor Information. Sensors, 2008, 8, 3932-3937.	2.1	8
79	Comment on "Test of Seismic Hazard Map from 500 Years of Recorded Intensity Data in Japan" by Masatoshi Miyazawa and Jim Mori. Bulletin of the Seismological Society of America, 2010, 100, 3329-3331.	1.1	8
80	Cost–benefit analyses to assess the potential of Operational Earthquake Forecasting prior to a mainshock in Europe. Natural Hazards, 2021, 105, 293-311.	1.6	8
81	Note on scaling of peak ground acceleration and peak ground velocity with magnitude. Geophysical Journal International, 2002, 148, 336-339.	1.0	7
82	Stress accumulation in the Marmara Sea estimated through groundâ€motion simulations from dynamic rupture scenarios. Journal of Geophysical Research: Solid Earth, 2017, 122, 2219-2235.	1.4	6
83	An accessible approach for the site response analysis of quasi-horizontal layered deposits. Bulletin of Earthquake Engineering, 2019, 17, 1163-1183.	2.3	6
84	Limits on the potential accuracy of earthquake risk evaluations using the L'Aquila (Italy) earthquake as an example. Annals of Geophysics, 2015, 58, .	0.5	6
85	Effect of Vertical Ground Motions on Horizontal Response of Structures. International Journal of Structural Stability and Dynamics, 2003, 03, 227-265.	1.5	5
86	Special issue in memory of Nicholas Ambraseys. Bulletin of Earthquake Engineering, 2014, 12, 1-3.	2.3	5
87	Guidance on Conducting 2D Linear Viscoelastic Site Response Analysis Using a Finite Element Code. Journal of Earthquake Engineering, 2021, 25, 1153-1170.	1.4	5
88	Assessment of the uncertainty in spatial-correlation models for earthquake ground motion due to station layout and derivation method. Bulletin of Earthquake Engineering, 2021, 19, 5415-5438.	2.3	5
89	Seismic network design to detect felt ground motions from induced seismicity. Soil Dynamics and Earthquake Engineering, 2013, 48, 193-197.	1.9	4
90	Investigating the Use of Record-to-Record Variability in Static Capacity Approaches. , $2014, \ldots$		4

#	Article	IF	Citations
91	Sensitivity Analysis of Different Capacity Spectrum Approaches to Assumptions in the Modeling, Capacity and Demand Representations. , 2014, , .		4
92	Preface of special issue: A new generation of ground-motion models for Europe and the Middle East. Bulletin of Earthquake Engineering, 2014, 12, 307-310.	2.3	4
93	Comment on the paper  A risk-mitigation approach to the management of induced seismicity' by J. J. Bommer, H. Crowley and R. Pinho. Journal of Seismology, 2016, 20, 393-394.	0.6	4
94	Nonlinear Site Effects from the 30 November 2018 Anchorage, Alaska, Earthquake. Bulletin of the Seismological Society of America, 0 , , .	1.1	4
95	A decision-making approach for operational earthquake forecasting. International Journal of Disaster Risk Reduction, 2021, 66, 102591.	1.8	4
96	Exploring the impact of spatial correlations of earthquake ground motions in the catastrophe modelling process: a case study for Italy. Bulletin of Earthquake Engineering, 2022, 20, 5747-5773.	2.3	4
97	Evaluation of horizontal to vertical spectral ratio and standard spectral ratio methods for mapping shear wave velocity across anchorage, Alaska. Soil Dynamics and Earthquake Engineering, 2021, 150, 106918.	1.9	3
98	Opportunities for the development of professional skills for undergraduate civil and environmental engineers. European Journal of Engineering Education, 2022, 47, 793-813.	1.5	3
99	Comment on "Influence of Focal Mechanism in Probabilistic Seismic Hazard Analysis" by Vincenzo Convertito and Andre Herrero. Bulletin of the Seismological Society of America, 2006, 96, 750-753.	1.1	2
100	Managing Bridge Scour Risk Using Structural Health Monitoring. , 2019, , .		2
101	Improving earthquake ground-motion predictions for the North Sea. Journal of Seismology, 2020, 24, 343-362.	0.6	2
102	NOTE ON THE INCLUSION OF SITE CLASSIFICATION INFORMATION IN EQUATIONS TO ESTIMATE STRONG GROUND MOTIONS. Journal of Earthquake Engineering, 2003, 7, 373-380.	1.4	1
103	Site Response Analysis of Anchorage, Alaska Using Generalized Inversions of Strong-Motion Data (2004–2019). Pure and Applied Geophysics, 2022, 179, 499.	0.8	1
104	Engineering site response analysis of Anchorage, Alaska, using site amplifications and random vibration theory. Earthquake Spectra, 0, , 875529302110654.	1.6	1
105	Title is missing!. Journal of Earthquake Engineering, 2003, 7, 373.	1.4	O
106	Nicholas Neocles Ambraseys. Geotechnique, 2013, 63, 1456-1457.	2.2	0
107	Influence of the Site-Specific Component of Kappa on the Magnitude-Dependency of Within-Event Aleatory Variabilities in Ground-Motion Models. Seismological Research Letters, 2021, 92, 238-245.	0.8	0
108	Estimating Ground Motions In The Largest Crustal Earthquakes. , 2017, , .		O