Agustin Mihi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9010699/publications.pdf

Version: 2024-02-01

		117453	114278
78	4,021	34	63
papers	citations	h-index	g-index
81	81	81	5885
O1	O1	01	3003
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced Photoluminescence of Cesium Lead Halide Perovskites by Quasiâ€3D Photonic Crystals. Advanced Optical Materials, 2022, 10, 2101324.	3.6	10
2	Efficient infrared sunlight absorbers based on gold-covered, inverted silicon pyramid arrays. Materials Advances, 2022, 3, 2364-2372.	2.6	2
3	Au/TiO ₂ 2Dâ€Photonic Crystals as UV–Visible Photocatalysts for H ₂ Production. Advanced Energy Materials, 2022, 12, .	10.2	24
4	Pre- and post-assembly modifications of colloidal plasmonic arrays: the effect of size distribution, composition and annealing. Journal of Materials Chemistry C, 2022, 10, 13913-13921.	2.7	7
5	Enhanced Directional Light Extraction from Patterned Rareâ€Earth Phosphor Films. Advanced Optical Materials, 2021, 9, 2001611.	3.6	17
6	Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles. , 2021, 3, 282-289.		11
7	Mechanically Tunable Latticeâ€Plasmon Resonances by Templated Selfâ€Assembled Superlattices for Multiâ€Wavelength Surfaceâ€Enhanced Raman Spectroscopy. Small Methods, 2021, 5, e2100453.	4.6	20
8	Engineering Plasmonic Colloidal Metaâ€Molecules for Tunable Photonic Supercrystals. Advanced Optical Materials, 2021, 9, 2100761.	3 . 6	20
9	Templated Colloidal Self-Assembly for Lattice Plasmon Engineering. Accounts of Materials Research, 2021, 2, 816-827.	5.9	40
10	Facile Chemical Route to Prepare Water Soluble Epitaxial Sr ₃ Al ₂ O ₆ Sacrificial Layers for Freeâ€Standing Oxides. Advanced Materials Interfaces, 2021, 8, 2001643.	1.9	13
11	Magneto-ionic suppression of magnetic vortices. Science and Technology of Advanced Materials, 2021, 22, 972-984.	2.8	3
12	Highâ€Throughput Nanofabrication of Metasurfaces with Polarizationâ€Dependent Response. Advanced Optical Materials, 2020, 8, 2000786.	3 . 6	13
13	Hydroxypropyl Cellulose Adhesives for Transfer Printing of Carbon Nanotubes and Metallic Nanostructures. Small, 2020, 16, e2004795.	5.2	8
14	Near infrared organic photodetectors based on enhanced charge transfer state absorption by photonic architectures. Journal of Materials Chemistry C, 2020, 8, 9688-9696.	2.7	11
15	Multiplex SERS Detection of Metabolic Alterations in Tumor Extracellular Media. Advanced Functional Materials, 2020, 30, 1910335.	7.8	71
16	Templatedâ€Assembly of CsPbBr ₃ Perovskite Nanocrystals into 2D Photonic Supercrystals with Amplified Spontaneous Emission. Angewandte Chemie - International Edition, 2020, 59, 17750-17756.	7.2	72
17	Electrodeposited Negative Index Metamaterials with Visible and Near Infrared Response. Advanced Optical Materials, 2020, 8, 2000865.	3.6	19
18	Templateâ€basierte Herstellung von 2Dâ€photonischen Superkristallen mit verstÃrkter spontaner Emission aus CsPbBr 3 â€Perowskitâ€Nanokristallen. Angewandte Chemie, 2020, 132, 17903-17909.	1.6	6

#	Article	IF	CITATIONS
19	Large area metasurfaces made with spherical silicon resonators. Nanophotonics, 2020, 9, 943-951.	2.9	12
20	Energy Transfer and Interference by Collective Electromagnetic Coupling. Nano Letters, 2019, 19, 5790-5795.	4.5	8
21	Solar Harvesting: a Unique Opportunity for Organic Thermoelectrics?. Advanced Energy Materials, 2019, 9, 1902385.	10.2	25
22	Tunable index metamaterials made by bottom-up approaches. Nanoscale Advances, 2019, 1, 1070-1076.	2.2	14
23	Nanostructured Back Reflectors for Efficient Colloidal Quantumâ€Dot Infrared Optoelectronics. Advanced Materials, 2019, 31, e1901745.	11.1	49
24	Geometric frustration in ordered lattices of plasmonic nanoelements. Scientific Reports, 2019, 9, 3529.	1.6	6
25	Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11763-11771.	4.0	90
26	Narrow Line Width Quantum Emitters in an Electron-Beam-Shaped Polymer. ACS Photonics, 2019, 6, 3120-3125.	3.2	9
27	Tunable Plasmonics by Self-Assembled Stretchable Superlattices on Macroscopic Scale. , 2019, , .		1
28	Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nature Photonics, 2018, 12, 343-348.	15.6	146
29	Ultrathin Semiconductor Superabsorbers from the Visible to the Nearâ€Infrared. Advanced Materials, 2018, 30, 1705876.	11.1	29
30	A water-processable cellulose-based resist for advanced nanofabrication. Nanoscale, 2018, 10, 17884-17892.	2.8	17
31	Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. ACS Nano, 2018, 12, 8531-8539.	7.3	239
32	Low cost and large-area photonic architectures for enhanced light management in optoelectronic devices (Conference Presentation). , 2016, , .		0
33	Surface roughness boosts the SERS performance of imprinted plasmonic architectures. Journal of Materials Chemistry C, 2016, 4, 3970-3975.	2.7	52
34	Improving the Efficiency of PTB1: PCBM Bulk Heterojunction Solar Cells by Polymer Blend Solution Aging. IEEE Journal of Photovoltaics, 2015, 5, 889-896.	1.5	7
35	Molecular interfaces for plasmonic hot electron photovoltaics. Nanoscale, 2015, 7, 2281-2288.	2.8	33
36	Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors. ACS Photonics, 2015, 2, 950-957.	3.2	63

#	Article	IF	CITATIONS
37	Interplay Between Morphology, Optical Properties, and Electronic Structure of Solution-Processed Bi ₂ S ₃ Colloidal Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 10693-10699.	1.5	37
38	Imprinted Electrodes for Enhanced Light Trapping in Solution Processed Solar Cells. Advanced Materials, 2014, 26, 443-448.	11.1	40
39	Enabling New Classes of Templated Materials through Mesoporous Carbon Colloidal Crystals. Advanced Optical Materials, 2013, 1, 300-304.	3.6	16
40	Coherent Phonon-Grain Boundary Scattering in Silicon Inverse Opals. Nano Letters, 2013, 13, 618-624.	4.5	36
41	Coupling Resonant Modes of Embedded Dielectric Microspheres in Solutionâ€Processed Solar Cells. Advanced Optical Materials, 2013, 1, 139-143.	3.6	15
42	Photoelectric Energy Conversion of Plasmon-Generated Hot Carriers in Metal–Insulator–Semiconductor Structures. ACS Nano, 2013, 7, 3581-3588.	7.3	116
43	Microresonators: Coupling Resonant Modes of Embedded Dielectric Microspheres in Solutionâ€Processed Solar Cells (Advanced Optical Materials 2/2013). Advanced Optical Materials, 2013, 1, 194-194.	3.6	1
44	Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication. Journal of Micromechanics and Microengineering, 2012, 22, 055018.	1.5	40
45	Imbricate Scales as a Design Construct for Microsystem Technologies. Small, 2012, 8, 901-906.	5.2	24
46	Triangular Elastomeric Stamps for Optical Applications: Nearâ€Field Phase Shift Photolithography, 3D Proximity Field Patterning, Embossed Antireflective Coatings, and SERS Sensing. Advanced Functional Materials, 2012, 22, 2927-2938.	7.8	47
47	Radiative Lifetime Modification of LaF ₃ :Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals. Advanced Materials, 2012, 24, OP153-8.	11.1	20
48	Spatial light interference tomography (SLIT). Optics Express, 2011, 19, 19907.	1.7	71
49	Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nature Nanotechnology, 2011, 6, 402-407.	15.6	289
50	Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nature Communications, 2011, 2, 479.	5.8	162
51	Transfer of Preformed Threeâ€Dimensional Photonic Crystals onto Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 5712-5715.	7.2	135
52	Multidimensional Architectures for Functional Optical Devices. Advanced Materials, 2010, 22, 1084-1101.	11.1	166
53	Porous Oneâ€Dimensional Photonic Crystals Improve the Powerâ€Conversion Efficiency of Dyeâ€Sensitized Solar Cells. Advanced Materials, 2009, 21, 764-770.	11.1	249
54	Nonlinear light generation at the high energy range of a 3D opal film. , 2009, , .		0

#	Article	lF	CITATIONS
55	Light generation at the anomalous dispersion high energy range of a nonlinear opal film. Optics Express, 2009, 17, 12210.	1.7	9
56	Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in Photonic-Crystal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1150-1154.	1.5	65
57	Spectral Response of Opal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 13-17.	1.5	137
58	Integration of photonic crystals in dye sensitized solar cells., 2008,,.		0
59	Full processing of Colloidal Photonic Crystals by Spin-Coating. , 2007, , .		0
60	High band anomalous group velocity dispersion for the enhancement of the nonlinear interaction. , $2007, , .$		1
61	Phase delay and group velocity determination at a planar defect state in three dimensional photonic crystals. Applied Physics Letters, 2007, 90, 101113.	1.5	15
62	Enhanced power conversion efficiency in solar cells coupled to photonic crystals. Proceedings of SPIE, 2007, , .	0.8	1
63	Enhanced Photoconductivity in Thinâ€Film Semiconductors Optically Coupled to Photonic Crystals. Advanced Materials, 2007, 19, 4177-4182.	11.1	65
64	Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers. Applied Physics Letters, 2006, 88, 193110.	1.5	86
65	Building Nanocrystalline Planar Defects within Self-Assembled Photonic Crystals by Spin-Coating. Advanced Materials, 2006, 18, 1183-1187.	11.1	72
66	Oriented Colloidal-Crystal Thin Films by Spin-Coating Microspheres Dispersed in Volatile Media. Advanced Materials, 2006, 18, 2244-2249.	11,1	273
67	Perfecting Imperfectionâ€"Designer Defects in Colloidal Photonic Crystals. Advanced Materials, 2006, 18, 2779-2785.	11.1	82
68	Origin of enhanced light harvesting in colloidal-crystal-based dye-sensitised solar cells. , 2006, 6197, 187.		0
69	Full processing of colloidal photonic crystals by spin coating. , 2006, , .		1
70	Tunable defects in colloidal photonic crystals. , 2006, , .		1
71	Building Tunable Planar Defects into Photonic Crystals Using Polyelectrolyte Multilayers. Advanced Materials, 2005, 17, 1912-1916.	11.1	70
72	Surface resonant modes in colloidal photonic crystals. Physical Review B, 2005, 71, .	1.1	42

#	Article	IF	CITATIONS
73	Tailoring Photonic Crystals with Nanometer-Scale Precision Using Polyelectrolyte Multilayers. Langmuir, 2005, 21, 499-503.	1.6	35
74	Growth of Mesoporous Materials within Colloidal Crystal Films by Spin-Coating. Journal of Physical Chemistry B, 2005, 109, 19643-19649.	1.2	44
75	Vapor swellable colloidal photonic crystals with pressure tunability. Journal of Materials Chemistry, 2005, 15, 133-138.	6.7	42
76	Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 15968-15976.	1.2	201
77	Dielectric Planar Defects in Colloidal Photonic Crystal Films. Advanced Materials, 2004, 16, 346-349.	11.1	123
78	Optical properties of surface modified self-assembled photonic crystals. , 0, , .		0