Agustin Mihi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9010699/agustin-mihi-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65	3,260 citations	32	56
papers		h-index	g-index
81	3,636	11.6 avg, IF	5.28
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
65	Au/TiO 2 2D-Photonic Crystals as UVIV isible Photocatalysts for H 2 Production. <i>Advanced Energy Materials</i> , 2022 , 12, 2103733	21.8	2
64	Enhanced Directional Light Extraction from Patterned Rare-Earth Phosphor Films. <i>Advanced Optical Materials</i> , 2021 , 9, 2001611	8.1	7
63	Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles 2021 , 3, 282-289		2
62	Mechanically Tunable Lattice-Plasmon Resonances by Templated Self-Assembled Superlattices for Multi-Wavelength Surface-Enhanced Raman Spectroscopy <i>Small Methods</i> , 2021 , 5, e2100453	12.8	6
61	Engineering Plasmonic Colloidal Meta-Molecules for Tunable Photonic Supercrystals. <i>Advanced Optical Materials</i> , 2021 , 9, 2100761	8.1	3
60	Templated Colloidal Self-Assembly for Lattice Plasmon Engineering. <i>Accounts of Materials Research</i> , 2021 , 2, 816-827	7.5	10
59	Facile Chemical Route to Prepare Water Soluble Epitaxial Sr3Al2O6 Sacrificial Layers for Free-Standing Oxides. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001643	4.6	4
58	Near infrared organic photodetectors based on enhanced charge transfer state absorption by photonic architectures. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9688-9696	7.1	8
57	Multiplex SERS Detection of Metabolic Alterations in Tumor Extracellular Media. <i>Advanced Functional Materials</i> , 2020 , 30, 1910335	15.6	32
56	Templated-Assembly of CsPbBr Perovskite Nanocrystals into 2D Photonic Supercrystals with Amplified Spontaneous Emission. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17750-17756	16.4	44
55	Electrodeposited Negative Index Metamaterials with Visible and Near Infrared Response. <i>Advanced Optical Materials</i> , 2020 , 8, 2000865	8.1	9
54	Template-basierte Herstellung von 2D-photonischen Superkristallen mit verstekter spontaner Emission aus CsPbBr3-Perowskit-Nanokristallen. <i>Angewandte Chemie</i> , 2020 , 132, 17903-17909	3.6	4
53	Large area metasurfaces made with spherical silicon resonators. <i>Nanophotonics</i> , 2020 , 9, 943-951	6.3	6
52	High-Throughput Nanofabrication of Metasurfaces with Polarization-Dependent Response. <i>Advanced Optical Materials</i> , 2020 , 8, 2000786	8.1	8
51	Hydroxypropyl Cellulose Adhesives for Transfer Printing of Carbon Nanotubes and Metallic Nanostructures. <i>Small</i> , 2020 , 16, e2004795	11	5
50	Solar Harvesting: a Unique Opportunity for Organic Thermoelectrics?. <i>Advanced Energy Materials</i> , 2019 , 9, 1902385	21.8	11
49	Tunable index metamaterials made by bottom-up approaches. <i>Nanoscale Advances</i> , 2019 , 1, 1070-1076	5.1	12

48	Nanostructured Back Reflectors for Efficient Colloidal Quantum-Dot Infrared Optoelectronics. <i>Advanced Materials</i> , 2019 , 31, e1901745	24	36
47	Geometric frustration in ordered lattices of plasmonic nanoelements. <i>Scientific Reports</i> , 2019 , 9, 3529	4.9	4
46	Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 11763-11771	9.5	54
45	Energy Transfer and Interference by Collective Electromagnetic Coupling. <i>Nano Letters</i> , 2019 , 19, 5790	-5;7;95	5
44	Narrow Line Width Quantum Emitters in an Electron-Beam-Shaped Polymer. ACS Photonics, 2019, 6, 31	2 0. 312	253
43	Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. <i>Nature Photonics</i> , 2018 , 12, 343-348	33.9	100
42	Ultrathin Semiconductor Superabsorbers from the Visible to the Near-Infrared. <i>Advanced Materials</i> , 2018 , 30, 1705876	24	24
41	Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. <i>ACS Nano</i> , 2018 , 12, 8531-8539	16.7	162
40	A water-processable cellulose-based resist for advanced nanofabrication. <i>Nanoscale</i> , 2018 , 10, 17884-1	7 8 9⁄2	11
39	Surface roughness boosts the SERS performance of imprinted plasmonic architectures. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3970-3975	7.1	39
38	Large-Area Plasmonic-Crystal⊞ot-Electron-Based Photodetectors. <i>ACS Photonics</i> , 2015 , 2, 950-957	6.3	55
37	Interplay Between Morphology, Optical Properties, and Electronic Structure of Solution-Processed Bi2S3 Colloidal Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 10693-10699	3.8	25
36	Improving the Efficiency of PTB1: PCBM Bulk Heterojunction Solar Cells by Polymer Blend Solution Aging. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 889-896	3.7	7
35	Molecular interfaces for plasmonic hot electron photovoltaics. <i>Nanoscale</i> , 2015 , 7, 2281-8	7.7	31
34	Imprinted electrodes for enhanced light trapping in solution processed solar cells. <i>Advanced Materials</i> , 2014 , 26, 443-8	24	37
33	Enabling New Classes of Templated Materials through Mesoporous Carbon Colloidal Crystals. <i>Advanced Optical Materials</i> , 2013 , 1, 300-304	8.1	14
32	Coherent phonon-grain boundary scattering in silicon inverse opals. <i>Nano Letters</i> , 2013 , 13, 618-24	11.5	33
31	Coupling Resonant Modes of Embedded Dielectric Microspheres in Solution-Processed Solar Cells. <i>Advanced Optical Materials</i> , 2013 , 1, 139-143	8.1	14

30	Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. <i>ACS Nano</i> , 2013 , 7, 3581-8	16.7	97
29	Microresonators: Coupling Resonant Modes of Embedded Dielectric Microspheres in Solution-Processed Solar Cells (Advanced Optical Materials 2/2013). <i>Advanced Optical Materials</i> , 2013 , 1, 194-194	8.1	1
28	Imbricate scales as a design construct for microsystem technologies. <i>Small</i> , 2012 , 8, 901-6, 785	11	22
27	Triangular Elastomeric Stamps for Optical Applications: Near-Field Phase Shift Photolithography, 3D Proximity Field Patterning, Embossed Antireflective Coatings, and SERS Sensing. <i>Advanced Functional Materials</i> , 2012 , 22, 2927-2938	15.6	41
26	Radiative lifetime modification of LaFINd nanoparticles embedded in 3D silicon photonic crystals. <i>Advanced Materials</i> , 2012 , 24, OP153-8	24	18
25	Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication. <i>Journal of Micromechanics and Microengineering</i> , 2012 , 22, 055018	2	36
24	Spatial light interference tomography (SLIT). Optics Express, 2011, 19, 19907-18	3.3	55
23	Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. <i>Nature Nanotechnology</i> , 2011 , 6, 402-7	28.7	258
22	Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. <i>Nature Communications</i> , 2011 , 2, 479	17.4	140
21	Transfer of Preformed Three-Dimensional Photonic Crystals onto Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2011 , 123, 5830-5833	3.6	21
20	Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5712-5	16.4	128
19	Multidimensional architectures for functional optical devices. <i>Advanced Materials</i> , 2010 , 22, 1084-101	24	154
18	Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells. <i>Advanced Materials</i> , 2009 , 21, 764-770	24	227
17	Light generation at the anomalous dispersion high energy range of a nonlinear opal film. <i>Optics Express</i> , 2009 , 17, 12210-6	3.3	9
16	Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in Photonic-Crystal-Based Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1150-115	4 ^{3.8}	56
15	Spectral Response of Opal-Based Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13-17	3.8	131
14	Enhanced Photoconductivity in Thin-Film Semiconductors Optically Coupled to Photonic Crystals. <i>Advanced Materials</i> , 2007 , 19, 4177-4182	24	58
13	Phase delay and group velocity determination at a planar defect state in three dimensional photonic crystals. <i>Applied Physics Letters</i> , 2007 , 90, 101113	3.4	15

LIST OF PUBLICATIONS

12	Building Nanocrystalline Planar Defects within Self-Assembled Photonic Crystals by Spin-Coating. <i>Advanced Materials</i> , 2006 , 18, 1183-1187	24	66
11	Oriented Colloidal-Crystal Thin Films by Spin-Coating Microspheres Dispersed in Volatile Media. <i>Advanced Materials</i> , 2006 , 18, 2244-2249	24	241
10	Tunable defects in colloidal photonic crystals 2006 ,		1
9	Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers. <i>Applied Physics Letters</i> , 2006 , 88, 193110	3.4	81
8	Tailoring photonic crystals with nanometer-scale precision using polyelectrolyte multilayers. <i>Langmuir</i> , 2005 , 21, 499-503	4	32
7	Growth of mesoporous materials within colloidal crystal films by spin-coating. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 19643-9	3.4	40
6	Vapor swellable colloidal photonic crystals with pressure tunability. <i>Journal of Materials Chemistry</i> , 2005 , 15, 133-138		38
5	Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 15968-76	3.4	173
4	Building Tunable Planar Defects into Photonic Crystals Using Polyelectrolyte Multilayers. <i>Advanced Materials</i> , 2005 , 17, 1912-1916	24	66
3	Surface resonant modes in colloidal photonic crystals. <i>Physical Review B</i> , 2005 , 71,	3.3	37
2	Dielectric Planar Defects in Colloidal Photonic Crystal Films. Advanced Materials, 2004, 16, 346-349	24	110
1	Enhanced Photoluminescence of Cesium Lead Halide Perovskites by Quasi-3D Photonic Crystals. <i>Advanced Optical Materials</i> ,2101324	8.1	1