Guozhang Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9010660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying the triboelectric series. Nature Communications, 2019, 10, 1427.	5.8	1,107
2	Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Communications, 2020, 11, 2093.	5.8	287
3	An Ultra-Low-Friction Triboelectric–Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. ACS Nano, 2018, 12, 9433-9440.	7.3	286
4	Complementary Electromagneticâ€Triboelectric Active Sensor for Detecting Multiple Mechanical Triggering. Advanced Functional Materials, 2018, 28, 1705808.	7.8	87
5	Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Research, 2020, 13, 919-926.	5.8	74
6	High-performance ultraviolet photodetectors based on CdS/CdS:SnS ₂ superlattice nanowires. Nanoscale, 2016, 8, 14580-14586.	2.8	54
7	Alternating Current Photovoltaic Effect. Advanced Materials, 2020, 32, e1907249.	11.1	54
8	Artificial synapses based on biopolymer electrolyte-coupled SnO ₂ nanowire transistors. Journal of Materials Chemistry C, 2016, 4, 11110-11117.	2.7	52
9	All-inorganic perovskite CsPbBr ₃ microstructures growth <i>via</i> chemical vapor deposition for high-performance photodetectors. Nanoscale, 2019, 11, 21386-21393.	2.8	51
10	High-performance solar-blind SnO ₂ nanowire photodetectors assembled using optical tweezers. Nanoscale, 2019, 11, 2162-2169.	2.8	49
11	Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-Tunable Ternary CdS _{<i>x</i>} Se _{1–<i>x</i>} Nanowires. ACS Photonics, 2017, 4, 2495-2503.	3.2	48
12	A Rollingâ€Mode Al/CsPbBr ₃ Schottky Junction Direct urrent Triboelectric Nanogenerator for Harvesting Mechanical and Solar Energy. Advanced Energy Materials, 2022, 12, .	10.2	35
13	High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	29
14	Polymer–electrolyte-gated nanowire synaptic transistors for neuromorphic applications. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	27
15	Visible whispering-gallery modes in ZnO microwires with varied cross sections. Journal of Applied Physics, 2011, 110, .	1.1	17
16	High-performance and flexible photodetectors based on P3HT/CdS/CdS:SnS2 superlattice nanowires hybrid films. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	17
17	Sn-catalyst growth and optical waveguide of ultralong CdS nanowires. Chemical Physics Letters, 2010, 497, 85-88.	1.2	16
18	Deep-ultraviolet SnO2 nanowire phototransistors with an ultrahigh responsivity. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	12

Guozhang Dai

#	Article	IF	CITATIONS
19	Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires. Applied Physics A: Materials Science and Processing, 2015, 119, 343-349.	1.1	11
20	Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	11
21	Dramatically Enhanced Broadband Photodetection by Dual Inversion Layers and Fowler–Nordheim Tunneling. ACS Nano, 2019, 13, 2289-2297.	7.3	11
22	High-performance and flexible CsPbBr ₃ UV–vis photodetectors fabricated via chemical vapor deposition. Journal Physics D: Applied Physics, 2020, 53, 354002.	1.3	11
23	A Highâ€Performance and Longâ€Term Airâ€Stable CH ₃ NH ₃ Pbl ₃ /C8BTBT Heterojunction Photodetector Fabricated via Chemical Vapor Deposition. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000479.	1.2	11
24	Progress on growth of metal halide perovskites by vapor-phase synthesis and their applications. Journal Physics D: Applied Physics, 2022, 55, 073001.	1.3	10
25	Three-dimensional pyramidal CsPbBr3/C8BTBT film heterojunction photodetectors with high responsivity and long-term stability. Organic Electronics, 2022, 101, 106409.	1.4	9
26	Piezo-phototronic enhanced photoresponsivity based on single CdTe nanowire photodetector. Journal of Applied Physics, 2019, 125, .	1.1	8
27	Large-scale Roll-to-Roll Micro-gravure Printed Flexible PBDB-T/IT-M Bulk Heterojunction Photodetectors. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	7
28	Influence of disorders on the optical properties of butterfly wing: Analysis with a finite-difference time-domain method. European Physical Journal B, 2013, 86, 1.	0.6	6
29	The effect of air exposure on device performance of flexible C8-BTBT organic thin-film transistors with hygroscopic insulators. Science China Materials, 2020, 63, 2551-2559.	3.5	6
30	High-performance CdS@CsPbBr ₃ core–shell microwire heterostructure photodetector. Journal Physics D: Applied Physics, 2022, 55, 194002.	1.3	6
31	Can Vacuum Deposition Apply to Bismuth-Doped γ-CsPbI ₃ Perovskite? Revealing the Role of Bi ³⁺ in the Formation of Black Phase. Journal of Physical Chemistry Letters, 2021, 12, 6927-6933.	2.1	5
32	Highly transparent porous ZrO ₂ thin films: fabrication and optical properties. RSC Advances, 2015, 5, 35929-35933.	1.7	4
33	Auto-alignment of CdS nanowires via optical tweezers. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1