Svetlana T Topalova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9010545/publications.pdf

Version: 2024-02-01

1163117 1281871 29 151 8 11 citations g-index h-index papers 30 30 30 54 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Steiner triple systems of order 19 and 21 with subsystems of order 7. Discrete Mathematics, 2008, 308, 2732-2741.	0.7	20
2	Line spreads of PG(5, 2). Journal of Combinatorial Designs, 2009, 17, 90-102.	0.6	14
3	On point-transitive and transitive deficiency one parallelisms of PG \$\$(3,4)\$\$ (3,4). Designs, Codes, and Cryptography, 2015, 75, 9-19.	1.6	13
4	Optimal (<i>>v</i> , 4, 2, 1) optical orthogonal codes with small parameters. Journal of Combinatorial Designs, 2012, 20, 142-160.	0.6	11
5	On transitive parallelisms of \$\$PG(3,4)\$\$ P G (3 , 4). Applicable Algebra in Engineering, Communications and Computing, 2013, 24, 159-164.	0.5	9
6	New Regular Parallelisms of PG(3, 5). Journal of Combinatorial Designs, 2016, 24, 473-482.	0.6	9
7	Types of spreads and duality of the parallelisms of PG(3,Â5) with automorphisms of order 13. Designs, Codes, and Cryptography, 2019, 87, 495-507.	1.6	9
8	2-Spreads and Transitive and Orthogonal 2-Parallelisms of PG(5, 2). Graphs and Combinatorics, 2010, 26, 727-735.	0.4	8
9	Parallelisms of \$\$mathrm{PG}(3,4)\$\$ Invariant Under Cyclic Groups of Order 4. Lecture Notes in Computer Science, 2019, , 88-99.	1.3	8
10	Classification of Hadamard matrices of order 44 with automorphisms of order 7. Discrete Mathematics, 2003, 260, 275-283.	0.7	7
11	Optimal conflict-avoiding codes for 3, 4 and 5 active users. Problems of Information Transmission, 2017, 53, 42-50.	0.5	7
12	Isomorphism and Invariants of Parallelisms of Projective Spaces. Lecture Notes in Computer Science, 2020, , 162-172.	1.3	6
13	New parallelisms of PG (3, 4). Electronic Notes in Discrete Mathematics, 2017, 57, 193-198.	0.4	5
14	Classification of optimal (v, 4, 1) binary cyclically permutable constant-weight codes and cyclic 2-(v, 4,) Tj ETQq0	08.ggBT/	Overlock 10 T
15	Optimal $(v,5,2,1)$ ($v,5,2,1$) optical orthogonal codes of small v v. Applicable Algebra in Engineering, Communications and Computing, 2013, 24, 165-177.	0.5	4
16	Symmetric 2-(69,17,4) designs with automorphisms of order 13. Journal of Statistical Planning and Inference, 2001, 95, 335-339.	0.6	3
17	Some parallelisms of PG(3, 5) involving a definite type of spread. , 2020, , .		3
18	Hadamard 2-(63,31,15) designs invariant under the dihedral group of order 10. Discrete Mathematics, 2009, 309, 1347-1356.	0.7	2

#	Article	IF	CITATIONS
19	Classification of optimal conflict-avoiding codes of weights 6 and 7. Electronic Notes in Discrete Mathematics, 2017, 57, 9-14.	0.4	2
20	Backtrack Search for Parallelisms of Projective Spaces. Lecture Notes in Computer Science, 2021, , 544-557.	1.3	2
21	On Tight Optimal Conflict-Avoiding Codes for 3, 4, 5 and 6 Active Users. Cybernetics and Information Technologies, 2018, 18, 5-11.	1.1	2
22	Book spreads in <mml:math altimg="si12.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>P</mml:mi><mml:mi>G</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>7 Discrete Mathematics, 2014, 330, 76-86.</mml:mn></mml:mrow></mml:math>	:/mml:mn:	>< ¹ mml:mo>,<
23	On the Diffusion Property of the Improved Generalized Feistel with Different Permutations for Each Round. Lecture Notes in Computer Science, 2019, , 38-49.	1.3	1
24	Parallelisms of PG(3, \hat{A} 5) with an Automorphism Group of Order 25. Trends in Mathematics, 2021, , 668-674.	0.1	1
25	Enumeration of the doubles of the projective plane of order 4. Discrete Mathematics, 2006, 306, 2141-2151.	0.7	0
26	Classification of Strongly Conflict-Avoiding Codes. IEEE Communications Letters, 2018, 22, 2415-2418.	4.1	0
27	Classification of optimal (v, \hat{A} k, \hat{A} 1) binary cyclically permutable constant weight codes with \$\$k=5,\$\$ k = 5 , 6 and 7 and small lengths. Designs, Codes, and Cryptography, 2019, 87, 365-374.	1.6	0
28	On the diffusion of the Improved Generalized Feistel. Advances in Mathematics of Communications, 2020, .	0.7	0
29	On parallelisms of PG(5, 2) invariant under a cyclic subgroup of order 21., 2021, , .		O